• K G Nishanth

      Articles written in Bulletin of Materials Science

    • Pt–Ru decorated self-assembled TiO2–carbon hybrid nanostructure for enhanced methanol electrooxidation

      K G Nishanth P Sridhar S Pitchumani A K Shukla

      More Details Abstract Fulltext PDF

      Porous titanium oxide–carbon hybrid nanostructure (TiO2–C) with a specific surface area of 350 m2/g and an average pore-radius of 21.8 Å is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2–C supported Pt–Ru electro-catalyst (Pt–Ru/TiO2–C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2–C. TEM images reveal uniform distribution of Pt–Ru nanoparticles (𝑑Pt−Ru = 1.5–3.5 nm) on TiO2–C. Methanol oxidation and accelerated durability studies on Pt–Ru/TiO2–C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt–Ru. DMFC employing Pt–Ru/TiO2–C as an anode catalyst delivers a peak-power density of 91 mW/cm2 at 65 °C as compared to the peak-power density of 60 mW/cm2 obtained for the DMFC with carbon-supported Pt–Ru anode catalyst operating under similar conditions.

    • Insights into the effect of structure-directing agents on structural properties of mesoporous carbon for polymer electrolyte fuel cells

      A Arunchander K G Nishanth K K Tintula S Gouse Peera A K Sahu

      More Details Abstract Fulltext PDF

      Synthesis of mesoporous carbon (MC) with well-defined morphologies and, wide range of surface area and pore size, is reported by organic–organic interaction between thermally decomposable surfactants (structure-directing agents) and the cost-effective carbon precursors, such as phloroglucinol and formaldehyde. Selected surfactants based on tri-block co-polymer, non-ionic and ionic, are used for synthesis of MCs with wide variation in their physical properties. The present method could be applied to large-scale production of porous carbon with desired surface area and pore morphology and would practically be relevant to many emerging technologies including electrochemical power sources such as super-capacitors and fuel cells. In the present study, we have successfully used MCs as gas-diffusion layers in fuel cell electrodes and established proper balance between air permeability and water management. The porous carbon contributes significantly to reduce mass transfer existing at high current density region resulting in improved performance of the polymer electrolyte fuel cells.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.