• J P Hajra

      Articles written in Bulletin of Materials Science

    • Measurement of Gibbs energies of formation of CoF2 and MnF2 using a new composite dispersed solid electrolyte

      K T Jacob J P Hajra

      More Details Abstract Fulltext PDF

      Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.

    • Alloy oxide equilibria in the Cr-Mn-O system

      S Ranganathan J P Hajra

      More Details Abstract Fulltext PDF

      The phase boundaries of the Cr-Mn-O system have been investigated by alloy-oxide equilibria at 1173 and 1273 K and by isopiestic technique at 1323 K. The oxide phases which coexist in equilibrium with the Cr-Mn alloys are determined by x-ray diffraction studies. The results of the experiments indicate the presence of MnO in equilibrium with Mn-rich alloy whereas MnCr2O4 and Cr2O3 phases coexist with almost pure Cr. A three-phase equilibrium consisting of MnCr2O4 and MnO phases has been detected at the alloy composition XMn=0·252 at 1323 K. The composition of the alloy delineates the phase boundaries in the isothermal sections of the system. The results are interpreted by thermodynamic analysis of the Cr-Mn-O system using the data from the isopiestic measurements and those available in the literature.

    • A new formalism for representation of heat capacities of metals

      J P Hajra

      More Details Abstract Fulltext PDF

      The applicability of a function involving geometrical progression of temperature in interpreting the heat capacities of metals has been studied. The constants of the function have been described in terms of vibrational, electronic and magnetic contributions to heat capacities. The equation may be useful in representing heat capacity of metals.

    • Electrical transport in magnesium aluminate

      Tom Mathews K T Jacob J P Hajra

      More Details Abstract Fulltext PDF

      The conductivity of MgAl2O4 has been measured at 1273, 1473 and 1673 K as a function of the partial pressure of oxygen ranging from 105 to 10−14 Pa. The MgAl2O4 pellet, sandwiched between two platinum electrodes, was equilibrated with a flowing stream of either Ar + O2, CO + CO2 or Ar + H2 + H2O mixture of known composition. The gas mixture established a known oxygen partial pressure. All measurements were made at a frequency of 1 kHz. These measurements indicate pressure independent ionic conductivity in the range 1 to 10−14 Pa at 1273 K, 10−1 to 10−12 Pa at 1473 K and 10−1 to 10−4 Pa at 1673 K. The activation energy for ionic conduction is 1·48 eV, close to that for self-diffusion of Mg2+ ion in MgAl2O4 calculated from the theoretical relation of Glyde. Using the model, the energy for cation vacancy formation and activation energy for migration are estimated.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.