• Ibram Ganesh

      Articles written in Bulletin of Materials Science

    • Aqueous slip casting of MgAl2O4 spinel powder

      Ibram Ganesh

      More Details Abstract Fulltext PDF

      A stoichiometric MgAl2O4 spinel (MAS) powder was synthesized by calcining a compacted mixture of 𝛼-Al2O3 and calcined caustic MgO at 1400°C for 1 h and was surface treated against hydrolysis using an ethanol solution of H3PO4 and Al(H2PO4)3 after fine grinding. Aqueous suspensions with 41–45 vol.% treated powder were prepared using tetra methyl ammonium hydroxide (TMAH) and an ammonium salt of polyacrylic acid (Duramax D-3005) as dispersing agents. These stable suspensions were consolidated in plaster moulds by slip casting (SC) route for the first time. For comparison purposes, the treated powder was also compacted by die-pressing technique after converting into freeze-dried granules and sintered along with slip cast samples at 1550–1650°C for 1–2 h. The MAS ceramics fabricated by slip casting and die-pressing exhibited comparable properties.

    • Novel composites of $\beta$-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles

      IBRAM GANESH

      More Details Abstract Fulltext PDF

      Keeping the importance of developing suitable radome (a word derived from radar $+$ dome) materials and near-net shape consolidation technique for manufacturing radomes suitable for hypersonic ($\gt$mach 5) radar-guided missilesin India, the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, hasinitiated an in-house R&D programme and successfully developed a complete process know-how for manufacturing defectfreeprototype $\beta$-SiAlON-based radome structures with all the desired properties. As a part of this R&D programme, totalsix separate sub-projects mentioned below were undertaken and executed: (i) identification of the best composition out of$\beta$-Si$^{6−z}$Al$_z$O$_z$N$_{8−z}$ ($0 ≤ z ≤ 4.1$) solid solution, which possesses a right combination of properties required for radome applications, (ii) designing of an AlN-free precursor mixture for consolidating $\beta$-Si$_4$Al$_2$O$_2$N$_6$ ceramics by following aqueous colloidal processing routes, (iii) development of a process for passivating water-sensitive AlN powder against hydrolysis, (iv) development of aqueous gelcasting (GC) and hydrolysis-assisted solidification (HAS) powder processing routes for consolidating dense $\beta$-SiAlON ceramics using highly solids loaded ($\gt$50 vol%) aqueous slurries, (v) development ofan hydrolysis-induced aqueous gelcasting (GCHAS) process, a novel near-net-shape consolidation technique, to produceradomes with very high-production yields and (vi) development of an economic route for synthesizing the low-dielectricconstant and high strength novel $\beta$-SiAlON-SiO$_2$ ceramic composites. In this paper, (i) the basis for choosing $\beta$-SiAlON based ceramics for hypervelocity radome applications, and (ii) the various bottle-neck problems faced, while executing this entire R&D work and the way they were overcome have been critically analysed and discussed systematically, while citing all the relevant and important references.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.