• Harish C Barshilia

      Articles written in Bulletin of Materials Science

    • Deposition of TiN/CrN hard superlattices by reactive d.c. magnetron sputtering

      Harish C Barshilia K S Rajam

      More Details Abstract Fulltext PDF

      Multilayer superlattice coatings of TiN/CrN were deposited on silicon substrates using a reactive d.c. magnetron sputtering process. Superlattice period, also known as modulation wavelength (𝛬), was controlled by controlling the dwell time of the substrate underneath Ti and Cr targets. X-ray diffraction (XRD), nanoindentation and atomic force microscopy (AFM) were used to characterize the films. The XRD data showed 1st and 2nd order satellite reflections along the principal reflection for films having 132 Å $\geq \Lambda \geq$ 84 Å, thus confirming the formation of superlattice. The multilayer coatings exhibited hardness (𝐻) as high as 3200 kg/mm2, which is 2 times the rule-of-mixtures value (i.e. $H_{TiN}$ = 2200 kg/mm2 and $H_{CrN}$ = 1000 kg/mm2). Detailed investigations on the effects of various process parameters indicated that hardness of the superlattice coatings was affected not only by modulation wavelength but also by nitrogen partial pressure and ion bombardment during deposition.

    • Nanoindentation and atomic force microscopy measurements on reactively sputtered TiN coatings

      Harish C Barshilia K S Rajam

      More Details Abstract Fulltext PDF

      Titanium nitride (TiN) coatings were deposited by d.c. reactive magnetron sputtering process. The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (𝑉B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich diamond indenter were used to determine the hardness (𝐻) and Young’s modulus (𝑌) of the films. Detailed investigations on the role of substrate bias and nitrogen partial pressure on the mechanical properties of the coatings are presented in this paper. Considerable improvement in the hardness was observed when negative bias voltage was increased from 100–250 V. Films deposited at |𝑉B| = 250 V exhibited hardness as high as 3300 kg/mm2. This increase in hardness has been attributed to ion bombardment during the deposition. The ion bombardment considerably affects the microstructure of the coatings. Atomic force microscopy (AFM) of the coatings revealed fine-grained morphology for the films prepared at higher substrate bias voltage. The hardness of the coatings was found to increase with a decrease in nitrogen partial pressure.

    • Performance evaluation of reactive direct current unbalanced magnetron sputter deposited nanostructured TiN coated high-speed steel drill bits

      Harish C Barshilia K S Rajam

      More Details Abstract Fulltext PDF

      The stainless steels, in general, are considered to be difficult-to-machine materials. In order to machine these materials the surface of the tool is generally coated with physical vapour deposition (PVD) hard coatings such as titanium nitride (TiN), titanium aluminum nitride (TiAlN), etc. The adhesion is of vital importance for the performance of tools coated with PVD coatings. Proper surface treatments (in situ and ex situ) are required to achieve highly adherent PVD coatings on tools. We have deposited nanostructured TiN coatings on high-speed steel (HSS) drill bits and mild steel substrates using an indigenously built semi-industrial fourcathode reactive direct current (d.c.) unbalanced magnetron sputtering system. Various treatments have been given to the substrates for improved adhesion of the TiN coatings. The process parameters have been optimized to achieve highly adherent thick good quality TiN coatings. These coatings have been characterized using X-ray diffraction, nanoindentation and atomic force microscopy techniques. The performance of the coated HSS drill bits is evaluated by drilling a 13 mm thick 304 stainless steel plate under wet conditions. The results show significant improvement in the performance of the TiN coated HSS drill bits.

    • Effect of process parameters on growth rate and diameter of nano-porous alumina templates

      P Chowdhury K Raghuvaran M Krishnan Harish C Barshilia K S Rajam

      More Details Abstract Fulltext PDF

      Anodic aluminium oxide (AAO) template with hexagonal shaped nano-pores with high aspect ratio was fabricated by two-step anodization processes from high purity aluminium foil. It was observed that pore dimensions were affected by anodizing voltage, electrolyte temperature and the duration of anodization time. The vertical growth rate of the pores (10–250 nm/min) was found to vary exponentially with anodizing voltage; however, it exhibits linear increment with the electrolyte temperature. The measured pore diameter (50–130 nm) shows a linear variation with anodizing voltage. The bottom barrier oxide layer was etched out by pore widening treatment to obtain through holes.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.