• Hari Om

      Articles written in Bulletin of Materials Science

    • Influence of conductive electroactive polymer polyaniline on electrochemical performance of LiMn1.95Al0.05O4 cathode for lithium ion batteries

      Chang-Ling Fan Hari Om Ke-He Zhang Shao-Chang Han

      More Details Abstract Fulltext PDF

      Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1.95Al0.05O4 cathode for lithium ion batteries. Results show that LiMn1.95Al0.05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive in cathode. It shows that the conductivity of cathode reaches its maximum value when the content of conductive additives is 15 wt%. This is in agreement with the results of charge and discharge experiments. The application of polyaniline can evidently enhance the electrochemical performance of cathode. The discharge capacity of cathode using 15 wt% polyaniline is 95.9 mAh g-1 at the current density of 170 mA g-1. The charge transfer resistance under different depths of discharge of cathode is much lower compared with the use of acetylene black. It can be concluded that the application of polyaniline in cathode can greatly improve the electrochemical performances of LiMn1.95Al0.05O4 cathode.

    • Effect of annealing temperature and CdCl$_2$ treatment on the photo-conversion efficiency of CdTe/Zn$_{0.1}$Cd$_{0.9}$S thin film solar cells

      SONAL SINGHAL AMIT KUMAR CHAWLA HARI OM GUPTA RAMESH CHANDRA

      More Details Abstract Fulltext PDF

      We report the effects of annealing in conjunction with CdCl$_2$ treatment on the photovoltaic properties of CdTe/Zn$_{0.1}$Cd$_{0.9}$S thin film solar cells. CdTe layer is subjected to dry CdCl$_2$ treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to 500$^{\circ}$C. AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry CdCl$_2$ treatment. This recrystallization and grain growth of the CdTe layer upon CdCl$_2$ treatment translates into improved photo-conversion efficiencies of CdTe/Zn$_{0.1}$Cd$_{0.9}$S cell. The results of dry CdCl$_2$ treatment were compared with conventional wet CdCl$_2$ treatment. Photo-conversion efficiency of 5.2% is achieved for dry CdCl$_2$-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of 425$^{\circ}$C.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.