H S Maiti
Articles written in Bulletin of Materials Science
Volume 5 Issue 1 March 1983 pp 21-28
Glass formation region and electrical conductivity in the system B2O3-Li2O-Li3PO4
Glass formation region was determined for the B2O3-Li2O-Li3PO4 system. Under the present experimental conditions, binary lithium borate glasses could be formed containing a maximum of 27 mol% Li2O. However, this could be increased to 36 mol% in the ternary system. Electrical conductivity was measured at temperatures ranging from room temperature to 350°C. The temperature dependence of the electrical conductivity of these glasses follows Arrhenius equation. The conductivity increased with increasingly alkali content. Maximum conductivity of the order of 10−4 ohm−1 cm−1 was obtained with the glass containing about 36 mol% Li2O at 250°C. Activation energy for conduction also varied with total Li2O content.
Volume 6 Issue 2 May 1984 pp 201-221 Glasses
Fast ion conducting lithium glasses—Review
For the last few years fast ion conducting lithium glasses are being studied due to their potential use in advanced electrochemical devices. A number of glass systems containing oxides, sulphides and other lithium compounds prepared by both conventional cooling and rapid quenching techniques have been reported. In this paper we review the transport properties of lithium ion conducting glasses. The special features of the ionic conduction process have been highlighted and some experimental techniques to study transport properties have been described. Some of the common observations of the properties have been discussed and finally some important problems for future development have been pointed out.
Volume 15 Issue 5 August 1992 pp 389-389 Seminar On Ceramies And Glasses For Electronic Applications
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.