• HANG XIE

      Articles written in Bulletin of Materials Science

    • Rectifying resistance-switching behaviour of Ag/SBTO/STMO/p$^+$-Si heterostructure films

      WENBO ZHANG HUA WANG JIWEN XU GUOBAO LIU HANG XIE LING YANG

      More Details Abstract Fulltext PDF

      The Sr$_{0.88}$Bi$_{0.12}TiO$_3$/SrTi$_{0.92}$Mg$_{0.08}$O$_3$ (SBTO/STMO) heterostructure films were prepared on p$^+$-Si substratesby sol–gel spin-coating technique, and the films had good crystallinity and uniform grain distribution. The heterostructure films with a structure of Ag/SBTO/STMO/p$^+$-Si exhibited a bipolar, remarkable resistance-switching characteristic, and $R_{\rm HRS}/R_{\rm LRS} \sim 10^4$. More importantly, the heterostructure films showed rectifying characteristic in the low resistance state (LRS), and the rectification ratio can reach 10$^2$ at $\pm$1 V. The dominant resistive-switching conduction mechanism of high resistance state (HRS) was Ohmic behaviour, and the LRS changed to space charge-limited current(SCLC).

    • Resistance-switching properties of Bi-doped SrTiO$_3$ films for non-volatile memory applications with different device structures

      HUA WANG WENBO ZHANG JIWEN XU GUOBAO LIU HANG XIE LING YANG

      More Details Abstract Fulltext PDF

      SrTiO$_3$ and Bi-doped SrTiO$_3$ films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. SrTiO$_3$ and Sr$_{0.92}$Bi$_{0.08}$TiO$_3$ films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the Sr$_{0.92}$Bi$_{0.08}$TiO$_3$ films grown on Si is slightly larger than those of the SrTiO$_3$ films grown on Si and the Sr$_{0.92}$Bi$_{0.08}$TiO$_3$ films grown on Pt. The SrTiO$_3$ or Sr$_{0.92}$Bi$_{0.08}$TiO$_3$ films grown on Si or Pt all exhibitbipolar resistive-switching behaviour and follow the same conductive mechanism; however, the Ag/Sr$_{0.92}$Bi$_{0.08}$TiO$_3$/Si device possesses the highest $R_{\rm HRS}/R_{\rm LRS}$ of 10$^5$ and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the $R_{\rm HRS}/R_{\rm LRS}$ of the SrTiO$_3$ films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the Sr$_{0.92}$Bi$_{0.08}$TiO$_3$ films.

    • High piezoelectric properties of 0.82(Bi$_{0.5}$Na$_{0.5}$)TiO$_3$–0.18(Bi$_{0.5}$K$_{0.5}$)TiO$_3$ lead-free ceramics modified by (Mn$_{1/3}$Nb$_{2/3}$)$^{4+}$ complex ions

      YIXUAN SHEN HANG XIE YABIN SUN JIWEN XU LING YANG XIAOYI PAN CHANGRONG ZHOU HUA WANG

      More Details Abstract Fulltext PDF

      The complex ions (Mn$_{1/3}$Nb$_{2/3}$)$^{4+}$ doped 0.82BNT–0.18BKT (BNKT-xMN) ceramics were prepared by conventional solid-state sintering. The effects of the MN content on the structural and electrical properties of the BNKT-$x$MN ceramics were investigated. The grain size decreases sharply after doping MN. With the increase of the MN content, the phase structure changes from the rhombohedral and tetragonal phase to the tetragonal phase, then to the pseudo-cubic phase. The ferroelectric phase transforms to the relaxor phase. At critical phase (x = 0.03), the maximum positive bipolar strain and unipolar strain are 0.38 and 0.386%, respectively. The corresponding $d^*$$_{33}$ and $d_{33}$ are 767 pm V$^{–1}$ and 158 pC N$^{–1}$, respectively. Meanwhile, the dielectric constant gradually decreases with the increase of the MN content, which flattens the permittivity curves. The large piezoelectric responses are closely associated with the reversible relaxor ferroelectric phase transformation.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.