• H K Varma

      Articles written in Bulletin of Materials Science

    • On the development of an apatitic calcium phosphate bone cement

      Manoj Komath H K Varma R Sivakumar

      More Details Abstract Fulltext PDF

      Development of an apatitic calcium phosphate bone cement is reported. 100 μ Particles of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) were mixed in equimolar ratio to form the cement powder. The wetting medium used was distilled water with Na2HPO4 as accelerator to manipulate the setting time. The cement powder, on wetting with the medium, formed a workable putty. The setting times of the putty were measured using a Vicat type apparatus and the compressive strength was determined with a Universal Testing Machine. The nature of the precipitated cement was analyzed through X-ray diffraction (XRD), fourier transform infrared spectrometry (FTIR) and energy dispersive electron microprobe (EDAX). The results showed the phase to be apatitic with a calcium-to-phosphorous ratio close to that of hydroxyapatite. The microstructure analysis using scanning electron microscopy (SEM) showed hydroxyapatite nano-crystallite growth over particulate matrix surface. The structure has an apparent porosity of ∼ 52%. There were no appreciable dimensional or thermal changes during setting. The cement passed the in vitro toxicological screening (cytotoxicity and haemolysis) tests. Optimization of the cement was done by manipulating the accelerator concentration so that the setting time, hardening time and the compressive strength had clinically relevant values.

    • Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model

      Annie John S Abiraman H K Varma T V Kumari P R Umashankar

      More Details Abstract Fulltext PDF

      This study evaluated the tissue reaction to porous hydroxyapatite (HA) granules in a critical sized tibial-defect of New Zealand white rabbits for a period of 2, 6, 12 and 24 weeks. Physicochemical characterizations of the granules were done using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy to analyse the microstrucutre, composition, phase purity crystallinity and functional groups of HA. Prior to in vivo testing, the HA granules had proved to be biocompatible and cytocompatible en route in vitro studies using L929 mouse fibroblast cells. In the histologic evaluation, as early as 2 weeks, bone ingrowth was observed in the pores and interstices of the granules forming a network of bony trabeculae and over 6, 12 and 24 weeks, it was seen that the granules assisted in bone formation. Fluorochrome multilabels of yellow, red and orange lines showed active sites of bone mineralization in progress in the pores and periphery of the granules. Good osteointegration of the granules with the host bone was observed. There was neither inflammation nor fibreous tissue interposition while resorption of the material was in effect a slow process, since the HA granules still persisted after 24 weeks.

    • Preliminary in vitro and in vivo characterizations of a sol–gel derived bioactive glass–ceramic system

      S Abiraman H K Varma T V Kumari P R Umashankar Annie John

      More Details Abstract Fulltext PDF

      This study investigates quantitatively and qualitatively the sol–gel derived bioactive glass–ceramic system (BGS)-apatite–wollastonite (AW) type granules in the size range of 0.5–1 mm, as an effective graft material for bone augmentation and restoration. Scanning electron micrographs (SEM) of the sintered granules revealed the rough material surface with micropores in the range 10–30 𝜇m. X-ray diffraction (XRD) pattern of the granules revealed the presence of crystalline phases of the hydroxyapatite and wollastonite, and the functional groups of the silicate and phosphates were identified by Fourier transform infrared spectroscopy (FT-IR). The in vitro cell culture studies with L929 mouse fibroblast cell line showed very few cells adhered on the BGS disc after 24 h. This could be due to the highly reactive surface of the disc concomitant with the crystallization but not due to the cytotoxicity of the material, since the cellular viability (MTT assay) with the material was 80%. Cytotoxicity and cytocompatibility studies proved that the material was non-toxic and biocompatible. After 12 weeks of implantation of the BGS granules in the tibia bone of New Zealand white rabbits, the granules were found to be well osteointegrated, as observed in the radiographs. Angiogram with barium sulphate and Indian ink after 12 weeks showed the presence of microcapillaries in the vicinity of the implant site implicating high vascularity. Gross observation of the implant site did not show any inflammation or necrosis. SEM of the implanted site after 24 weeks revealed good osteointegration of the material with the newly formed bone and host bone. New bone was also observed within the material, which was degrading. Histological evaluation of the bone healing with the BGS granules in the tibial defect at all time intervals was without inflammation or fibrous tissue encapsulation. After 2 weeks the new bone was observed as a trabeculae network around the granules, and by 6 weeks the defect was completely closed with immature woven bone. By 12 weeks mature woven bone was observed, and new immature woven bone was seen within the cracks of the granules. After 24 weeks the defect was completely healed with lamellar bone and the size of the granules decreased. Histomorphometrically the area percentage of new bone formed was 67.77% after 12 weeks and 63.37% after 24 weeks. Less bone formation after 24 weeks was due to an increased implant surface area contributed by the material degradation and active bone remodeling. The osteostimulative and osteoconductive potential of the BGS granules was established by tetracycline labelling of the mineralizing areas by 2 and 6 weeks. This sol–gel derived BGS granules proved to be bioactive and resorbable which in turn encouraged active bone formation.

    • Development of a fully injectable calcium phosphate cement for orthopedic and dental applications

      Manoj Komath H K Varma

      More Details Abstract Fulltext PDF

      A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented. The paper describes its characteristic properties including results of bio- compatibility studies.

      A conventional two-component calcium phosphate cement formulation (having a powder part containing dry mixture of acidic and basic calcium phosphate particles and a liquid part containing phosphate solution) is modified with a biocompatible gelling agent, to induce flow properties and cohesion. The quantity of the gelling agent is optimized to get a viscous paste, which is smoothly injectable through an 18-gauge needle, with clinically relevant setting parameters.

      The new formulation has a setting time of 20 min and a compressive strength of 11 MPa. The X-ray diffraction, Fourier transform infrared spectrometry, and energy dispersive electron microprobe analyses showed the phase to be hydroxyapatite, the basic bone mineral. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The cement did not show any appreciable dimensional or thermal change during setting. The injectability is estimated by extruding through needle and the cohesive property is assessed by water contact method. The cement passed the in vitro biocompatibility screening (cytotoxicity and haemolysis) tests.

    • Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions

      T S Pradeesh M C Sunny H K Varma P Ramesh

      More Details Abstract Fulltext PDF

      Hydroxyapatite (HAP) microspheres with peculiar spheres-in-sphere morphology were prepared by using oil-in-water emulsions and solvent evaporation technique. Ethylene vinyl acetate co-polymer (EVA) was used as the binder material. Preparation of HAP/EVA microspheres was followed by the thermal debinding and sintering at 1150°C for 3 h to obtain HAP microspheres. Each microsphere of 100–1000 𝜇m was in turn composed of spherical hydroxyapatite granules of 2–15 𝜇m size which were obtained by spray drying the precipitated HAP. The parameters such as percentage of initial HAP loading, type of stabilizer, concentration of stabilizer, stirring speed and temperature of microsphere preparation were varied to study their effect on the particle size and geometry of the microspheres obtained. It was observed that these parameters do have an effect on the size and shape of the microspheres obtained, which in turn will affect the sintered HAP microstructure. Of the three stabilizers used viz. polyoxyethylene(20) sorbitan monopalmitate (Tween-40), sodium laurate and polyvinyl alcohol (PVA), only PVA with a concentration not less than 0.1 wt% showed controlled stabilization of HAP granules resulting in spherical microspheres of required size. Morphologically better spherical microspheres were obtained at 20°C. Increasing the stirring speed produced smaller microspheres. Smaller microspheres having size < 50 𝜇m were obtained at a stirring speed of 1500 ± 50 rpm. A gradual decrease in pore size was observed in the sintered microspheres with increase in HAP loading.

    • Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium

      K Madhukumar H K Varma Manoj Komath T S Elias V Padmanabhan C M K Nair

      More Details Abstract Fulltext PDF

      The suitability of calcium phosphate crystals for thermoluminescence dosimetry (TLD) applications is investigated, owing to their equivalence to bone mineral. The 𝛼 and 𝛽 phases of tricalcium phosphate (TCP) were synthesized through wet precipitation and high temperature solid state routes and doped with Dy and Eu. The photoluminescence and thermoluminescence studies of the phosphors have been carried out.

      The TL properties were found to be highly dependent on the method of preparation of the material. Eu doping gave good PL emission, whereas Dy doping was more efficient in TL emission. 𝛽-TCP was found to be less TL sensitive than 𝛼-TCP, yet it was identified as a better phosphor material owing to its better fading characteristics.

      The dependence of TL of 𝛽-TCP : Dy on the energy and dose of radiation, and on the doping concentration were studied. The TL intensity was observed to fade exponentially during a storage period of 20 days, but it stabilized at 70% of the initial value after 30 days. The optimum doping concentration was found to be 0.5 mol%.

    • Formation of hydroxyapatite coating on titanium at 200°C through pulsed laser deposition followed by hydrothermal treatment

      Manoj Komath P Rajesh C V Muraleedharan H K Varma R Reshmi M K Jayaraj

      More Details Abstract Fulltext PDF

      Pulsed laser deposition (PLD) has emerged as an acceptable technique to coat hydroxyapatite on titanium-based permanent implants for the use in orthopedics and dentistry. It requires substrate temperature higher than 400°C to form coatings of good adhesion and crystallinity. As this range of temperatures is likely to affect the bulk mechanical properties of the implant, lowering the substrate temperature during the coating process is crucial for the long-term performance of the implant. In the present study, hydroxyapatite target was ablated using a pulsed Nd:YAG laser (355 nm) onto commercially pure titanium substrates kept at 200°C. The coating thus obtained has been subjected to hydrothermal treatment at 200°C in an alkaline medium. The coatings were analysed using microscratch test, optical profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and infrared spectroscopy (FTIR). XRD, EDS and FTIR showed that the as-deposited coating contained amorphous calcium phosphate and the hydrothermal treatment converted it into crystalline hydroxyapatite. The micro-morphology was granular, with an average size of 1 micron. In the microscratch test, a remarkable increase in adhesion with the substrate was seen as a result of the treatment. The plasma plume during the deposition has been analysed using optical emission spectroscopy, which revealed atomic and ionic species of calcium, phosphorous and oxygen. The outcomes demonstrate the possibility of obtaining adherent and crystalline hydroxyapatite on titanium substrate at 200°C through pulsed laser deposition and subsequent hydrothermal treatment.

    • Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model

      Manitha B Nair H K Varma P V Mohanan Annie John

      More Details Abstract Fulltext PDF

      Tissue-engineered bone regeneration has attracted much attention because of its high clinical demand for restoration of injured tissues. In the present study, we have evaluated the capability of bare (without cells) and tissue-engineered (with osteogenic-induced rat Mesenchymal Stem Cells (MSCs)) bioactive ceramics such as hydroxyapatite (HA) and triphasic ceramic-coated hydroxyapatite (HASi) to mediate vascularisation and osteoinduction at an extraskeletal site of rat model. The viability, proliferation and osteogenic differentiation of MSCs on the scaffolds were assessed in vitro and thereby established the capability of HASi in providing a better structural habitat than HA. The vascular invasion was relatively low in bare and tissueengineered HA at 2 and 4 weeks. Interestingly, the implantation site was well vascularised with profuse ingrowth of blood capillaries in HASi groups, with preference for tissue-engineered HASi groups. Similarly, neo-osteogenesis studies were shown only by tissue-engineered HASi groups. The ingrowth of numerous osteoblast-like cells was seen around and within the pores of the material in bare HASi and tissue-engineered HASi groups (very low cellular infiltration in bare HA groups), but there was no osteoid deposition. The positive impact in forming bone in tissue-engineered HASi groups is attributable to the scaffold and to the cells, with the first choice for scaffold because both HA and HASi were engineered simultaneously with the cells from same source and same passage. Thus, highly porous interconnected porous structure and appropriate chemistry provided by HASi in combination with osteogenic-induced MSCs facilitated better vascularisation that lead to neo-osteogenesis.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.