G MURTAZA
Articles written in Bulletin of Materials Science
Volume 39 Issue 6 October 2016 pp 1419-1425
M FAIZAN G MURTAZA S H KHAN A KHAN ASIF MEHMOOD R KHENATA S HUSSAIN
We investigated double perovskite compounds of the form Sr$_2$XOsO$_6$ (X = Li, Na, Ca) using the fullpotential linearized augmented plane wave (FP-LAPW) method. For the exchange-correlation energy, Wu andCohen generalized gradient approximation (WC-GGA), Perdew, Burke and Ernzerhof GGA (PBE-GGA), Engel and Vosko GGA (EV-GGA), and GGA plus Hubbard U-parameter (GGA $+$ U) were used. The calculated structuralparameters are in good agreement with the existing experimental results. Calculation of different elastic constants and elastic moduli reveals that these compounds are elastically stable and possess ductile nature. The GGA $+$ Uapproach yields quite accurate results of the bandgap as compared with the simple GGA schemes. The density of states plot shows that Sr-4d, Os-5d and O-2p states predominantly contribute to the conduction and valence bands.Further, our results regarding to the magnetic properties of these compounds reveal their ferromagnetic nature. In addition, these compounds seem to possess half-metallic properties, making them useful candidates for applicationsin spintronics devices.
Volume 39 Issue 6 October 2016 pp 1581-1591
Structural, elastic, electronic and optical properties of bi-alkali antimonides
G MURTAZA MAZHAR ULLAH NAEEM ULLAH MALIKA RANI M MUZAMMIL R KHENATA SHAHID M RAMAY UMAIR KHAN
The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na$_2$KSb, Na$_2$RbSb, Na$_2$CsSb, K$_2$RbSb, K$_2$CsSb and Rb$_2$CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical properties of these compounds. The calculated structural parameters are found in good agreement with the available experimental and theoretical results. All the compounds are mechanically stable. The compounds Na$_2$KSb, K$_2$RbSb, K$_2$CsSb and Rb$_2$CsSb have direct bandgaps, in which chemical bonding among the cations and anions is mainly ionic. Furthermore, the optical properties of these compounds are described in detail in terms of the dielectric function, refractive index, reflectivity, optical conductivity and absorption coefficient.
Volume 44 All articles Published: 20 July 2021 Article ID 0216
SADIA SHARIF G MURTAZA FOZIA SHAHEEN A N AKHTAR M A SHAFIQUE M I PIRACHA S ATIQ
Y ions incorporation effect on structural, ferroelectric and ferromagnetic properties of Bi$_{1-x}$Dy$_x$FeO$_3$
(
Volume 45 All articles Published: 20 February 2022 Article ID 0041
MOHSIN ISHFAQ PIRACHA G MURTAZA M IMRANULLAH SHAFQAT HUSSAIN
This study aims at designing microwave absorbing composites for controlling electromagnetic (EM) pollution by absorption of EM waves inside the composite material. For this purpose, a light weight and flexible microwave absorber composite was fabricated using reduced graphene oxide (RGO) and W-type barium hexaferrite (BaW) in polyvinylidene fluoride (PVDF) matrix. W-type hexaferrite nanoparticles (BaW) were fabricated by sol–gel auto-combustion method. The fabricated nanoparticles were mixed in PVDF by mechanical grinding. Subsequently, the composites were designed by ultrasonic mixing BaW/PVDF with RGO. The prepared samples were characterized through different techniques for their structural, morphological, and EM properties, as discussed in detail. The X-ray diffractometer results showed the existence of single-phase hexaferrite structure with an average particle size of 48.9 nm. The scanning electron microscope results show that BaW/PVDF is completely embedded in RGO. Dielectric results showed that addition of RGO in BaW/PVDF increases polarization effect, which increases dielectric constant of material. Moreover, RGO decreases the saturation magnetization of composites, which increases the anisotropy constant and hence increases the magnetic loss of material. The composite C3 having RGO to ferrite ratio 15:100 exhibits the maximum reflection loss of -11 dB with broad bandwidth ${\le}$-10 dB for complete X-band (8.2–12.4 GHz).
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.