• E Mohandas

      Articles written in Bulletin of Materials Science

    • Structural characterization of electrodeposited boron

      Ashish Jain C Ghosh T R Ravindran S Anthonysamy R Divakar E Mohandas G S Gupta

      More Details Abstract Fulltext PDF

      Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

    • HRTEM investigation of phase stability in alumina–zirconia multilayer thin films

      Chanchal Ghosh Divakar Ramachandran G Balakrishnan P Kuppusami E Mohandas

      More Details Abstract Fulltext PDF

      Phase stability of nanostructured thin films can be significantly different from the stability of the same materials in bulk form because of the increased contribution from surface and interface effects. Zirconia (ZrO2), stabilized in tetragonal and cubic phases, is a technologically important material and is used for most high temperature applications. In literature, zirconia can be found to be stabilized in its high temperature phases down to room temperature via two routes, doping with divalent or trivalent cations and crystallite size controls. Apart from these, in the alumina/zirconia thin-film multilayer system, a constraining effect on the zirconia layers provides another route to stabilization of the tetragonal zirconia phase at room temperature. However, in such nanostructured geometries, at high temperatures, the small diffusion lengths involved can influence the phase stability. The present work deals with the high-resolution transmission electron microscope (HRTEM) studies of pulsed laser ablated alumina–zirconia thin-film multilayers in the as deposited state and annealed up to 1473 K at 2 × 10−5 mbar. Conventional techniques such as X-ray diffraction lack the ability to detect localized phase changes at nanometre length scales and also for the low volume fraction of newly formed phases. Cross-sectional HRTEM techniques have been successful in detecting and characterizing these interactions.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.