• E M Mohammed

      Articles written in Bulletin of Materials Science

    • Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites

      M R Anantharaman K A Malini S Sindhu E M Mohammed S K Date S D Kulkarni P A Joy Philip Kurian

      More Details Abstract Fulltext PDF

      Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties.

    • Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles

      Binu P Jacob Ashok Kumar R P Pant Sukhvir Singh E M Mohammed

      More Details Abstract Fulltext PDF

      Nickel ferrite nanoparticles of very small size were prepared by sol–gel combustion and co-precipitation techniques. At the same annealing temperature sol–gel derived particles had bigger crystallite size. In both methods, crystallite size of the particles increased with annealing temperature. Sol–gel derived nickel ferrite particles were found to be of almost spherical shape and moderate particle size with a narrow size distribution; while co-precipitation derived particles had irregular shape and very small particle size with a wide size distribution. Nickel ferrite particles produced by sol–gel method exhibited more purity. Sol–gel synthesized nanoparticles were found to be of high saturation magnetization and hysteresis. Co-precipitation derived nickel ferrite particles, annealed at 400°C exhibited superparamagnetic nature with small saturation magnetization. Saturation magnetization increased with annealing temperature in both the methods. At the annealing temperature of 600°C, co-precipitation derived particles also became ferrimagnetic.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.