• Deepika

      Articles written in Bulletin of Materials Science

    • Differential scanning calorimetry studies of Se85Te15−xPbx (x = 4, 6, 8 and 10) glasses

      N B Maharajan N S Saxena Deepika Bhandari Mousa M Imran D Paudyal

      More Details Abstract Fulltext PDF

      Results of differential scanning calorimetry (DSC) studies of Se85Te15−xPbx (x = 4, 6, 8 and 10) glasses have been reported and discussed in this paper. The results have been analyzed on the basis of structural relaxation equation, Matusita’s equation and modified Kissinger’s equation. The activation energies of structural relaxation lie in between 226 and 593 kJ/mol. The crystallization growth is found to be onedimensional for all compositions. The activation energies of crystallization are found to be 100–136 kJ/mol by Matusita’s equation while 102–139 kJ/mol by modified Kissinger’s equation. The Hruby number (indicator of ease of glass forming and higher stability) is the highest for Se85Te9Pb6 glass while S factor (indicator of resistance to devitrification) is highest for Se85Te7Pb8 glass at all heating rates in our experiment. Further the highest resistance to devitrification has the highest value of structural activation energy and the activation energy of crystallization is maximum for the most stable glass by both Matusita’s equation and the modified Kissinger’s equation.

    • Effect of high-energy heavy ion irradiation on the crystallization kinetics of Co-based metallic glasses

      Rohit Jain Deepika Bhandari N S Saxena S K Sharma A Tripathi

      More Details Abstract Fulltext PDF

      Differential scanning calorimeter (DSC) is employed to study the crystallization kinetics of irradiated (at three different fluences with high-energy heavy ion; Ni11+ of 150 MeV) specimens of two Co-based metallic glasses. It is found that the crystallization process in both the glasses is completed in two phases. The DSC data have been analysed in terms of kinetic parameters viz. activation energy (𝐸𝑐), Avrami exponent (𝑛), dimensionality of growth (𝑚), using two different theoretical models. The results obtained have been compared with that of virgin samples. The lower activation energy in case of second crystallization occurring at higher temperature indicates the easier nucleation of second phase. The abnormally high value of Avrami exponent in Co–Ni glass indicates very high nucleation rate during first crystallization.

    • Metal-coated magnetic nanoparticles for surface enhanced Raman scattering studies

      G V Pavan Kumar N Rangarajan B Sonia P Deepika Nashiour Rohman Chandrabhas Narayana

      More Details Abstract Fulltext PDF

      We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated 𝛾 –Fe2O3 nanoparticles for applications in surface-enhanced Raman scattering (SERS). These nanoparticles, with plasmonic as well as super paramagnetic properties exhibit Raman enhancement factors of the order of 106 (105) for Ag (Au) coating, which are on par with the conventional Ag and Au nanoparticles. Raman markers like 2-naphthalenethiol, rhodamine-B and rhodamine-6G have been adsorbed to these nanoparticles and tested for nonresonant SERS at low concentrations. Further, to confirm the robustness of Ag-coated nanoparticles, we have performed temperaturedependent SERS in the temperature range of 77–473 K. The adsorbed molecules exhibit stable SERS spectra except at temperatures >323 K, where the thermal desorption of test molecule (naphthalenethiol) were evident. The magnetic properties of these nanoparticles combined with SERS provide a wide range of applications.

    • Effect of TiO2 nanotube length and lateral tubular spacing on photovoltaic properties of back illuminated dye sensitized solar cell

      Shantikumar V Nair A Balakrishnan K R V Subramanian A M Anu A M Asha B Deepika

      More Details Abstract Fulltext PDF

      The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular lateral spacings on the performance of back illuminated dye sensitized solar cells (DSSCs). The present study shows that processing short TiO2 nanotubes with good lateral spacings could significantly improve the performance of back illuminated DSSCs. Vertically aligned, uniform sized diameter TiO2 nanotube arrays of different tube lengths have been fabricated on Ti plates by a controlled anodization technique at different times of 24, 36, 48 and 72 h using ethylene glycol and ammonium fluoride as an electrolyte medium. Scanning electron microscopy (SEM) showed formation of nanotube arrays spread uniformly over a large area. X-ray diffraction (XRD) of TiO2 nanotube layer revealed the presence of crystalline anatase phases. By employing the TiO2 nanotube array anodized at 24 h showing a diameter ∼80 nm and length ∼1.5 𝜇m as the photo-anode for back illuminated DSSCs, a full-sun conversion efficiency (𝜂) of 3.5%was achieved, the highest value reported for this length of nanotubes.

    • Development of a new solid-state absorber material for dye-sensitized solar cell (DSSC)

      Swapna Lilly Cyriac B Deepika Bhaskaran Pillai S V Nair K R V Subramanian

      More Details Abstract Fulltext PDF

      In contrast to the conventional DSSC systems, where the dye molecules are used as light harvesting material, here a solid-state absorber was used as a sensitizer in conjunction with the dye. The materials like ZnO and Al2O3 : C, which will show optically stimulated luminescence (OSL) upon irradiation were used as extremely thin absorber layers. This novel architecture allows broader spectral absorption, an increase in photocurrent, and hence, an improved efficiency because of the mobility of the trapped electrons in the absorber material after irradiation, to the TiO2 conduction band. Nanocrystalline mesoporous TiO2 photoanodes were fabricated using these solid-state absorber materials and after irradiation, a few number of samples were co-sensitized with N719 dye. On comparing both the dye loaded photoanodes (ZnO/TiO2 and Al2O3 : C/TiO2), it can be concluded from the present studies that, the Al2O3 : C is superior to ZnO under photon irradiation. Al2O3 : C is more sensitive to photon irradiation than ZnO and hence there can be more trap centres produced in Al2O3 : C.

    • Effect of capping agents on optical and antibacterial properties of cadmium selenide quantum dots

      Deepika Rakesh Dhar Suman Singh Atul Kumar

      More Details Abstract Fulltext PDF

      Cadmium selenide quantum dots (CdSe QDs) were synthesized in aqueous phase by the freezing temperature injection technique using different capping agents (viz. thioglycolic acid, 1-thioglycerol, L-cysteine). Absorption spectra of CdSe QDs exhibited a blue shift as compared to its bulk counterpart, which is an indication of quantum confinement effect. The photoluminescence spectra of CdSe QDs confirmed that the particles are poly-dispersed and possess enhanced luminescent property, depending upon the chemical nature of capping agents. The QDs have been characterized by Fourier-transform infrared spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. Further, antimicrobial activity of as-prepared QDs has also been investigated using the disk diffusion method.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.