• DONG HAN

      Articles written in Bulletin of Materials Science

    • Effects of Zn doping concentration on resistive switching characteristics in Ag/La$_{1−x}Zn$_x$MnO$_3$/p$^+$-Si devices

      SHUAISHUAI YAN HUA WANG JIWEN XU LING YANG WEI QIU QISONG CHEN DONG HAN

      More Details Abstract Fulltext PDF

      Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^+$-Si devices with different Zn doping contents were fabricated through sol–gel method. The effects of Zn doping concentration on the microstructure of La$_{1−x}$Zn$_x$MnO$_3$ films, as well as on the resistance switching behaviour and endurance characteristics of Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^{+}$-Si were investigated. After annealing at 600$^{\circ}$C for 1~h, the La$_{1−x}$Zn$_x$MnO$_3$ ($x = 0.1$, 0.2, 0.3, 0.4, 0.5) are amorphous and have bipolar resistance characteristics, with RHRS/RLRS ratios $>$103. However, the endurance characteristics show considerable differences; $x = 0.3$ shows the best endurance characteristics in more than 1000 switching cycles. The conduction mechanism of the Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^{+}$-Si is the Schottky emission mode at high resistance state. However, the conduction mechanism at low resistance state varies with Zn doping concentration. The dominant mechanism at $x = 0.1$ is filamentary conduction mechanism, whereas that at $x \ge 0.2$ is space-charge-limited current conduction.

    • Influence of Ni doping on the structural, ferroelectric, magnetic and optical properties of Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ thin films

      HUA WANG DONG HAN JIWEN XU LING YANG

      More Details Abstract Fulltext PDF

      Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ ($x = 0.025–0.125$) thin films were synthesized by applying a sol–gel method on fluorine-doped tin oxide substrates. The influence of Ni doping concentration on the structure, leakage current, ferroelectric, magnetic and optical properties of Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ thin films was investigated. Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ thin films are polycrystalline films that present a single perovskite structure without any impurity phase when the Ni doping concentration is below 0.1 and present a Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ phase when the Ni doping concentration is above 0.1. The grain size of the films and their holes gradually decrease with an increase in the Ni doping amount. The saturation magnetization of Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ thin films increases with Ni content.However, appropriate Ni doping concentration can decrease the leakage current and enhance the ferroelectric polarization and optical transmittance of the films. Meanwhile, the absorption edge has a slight red shift. Bi$_{0.85}$Nd$_{0.15}$Fe$_{1−x}$Ni$_x$O$_3$ thin films possess better combination properties at a leakage current density of $4.27 \times 10^{−9}$ A cm$^{−2}$, ferroelectric polarization of 28.58 $\mu$C cm$^{−2}$, saturation magnetization of 2.08 emu cm$^{−3}$ and transmittance of over 85% when the Ni doping concentration, $x$ is 0.05.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.