D Patidar
Articles written in Bulletin of Materials Science
Volume 29 Issue 1 February 2006 pp 21-24 Semiconductors
Optical properties of CdS sintered film
D Patidar R Sharma N Jain T P Sharma N S Saxena
Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by ‘Hitachi spectrophotometer’ over the wavelength range 300–700 nm. The energy band gaps of these films have been calculated from reflection spectra. It is found that the energy band gap of both films is same as 2.41 eV. It is indicated that energy band gap of these films does not change. This value of band gap is in good agreement with the value reported by other workers. The measurement of photocurrent has also been carried out using Keithley High Resistance meter/ Electrometer. This film shows the high photosensitivity and high photocurrent decay. Thus so obtained films are suitable for fabrication of photo detectors and solar cells.
Volume 39 Issue 1 February 2016 pp 255-262
Electrical conduction mechanism in GeSeSb chalcogenide glasses
Vandana Kumari Anusaiya Kaswan D Patidar Kananbala Sharma N S Saxena
Electrical conductivity of chalcogenide glassy system Ge$_{30−x}$Se$_{70}$Sb$_{x}$ (𝑥 = 10, 15, 20 and 25) prepared by melt quenching has been determined at different temperatures in bulk through the $I$–$V$ characteristic curves. It is quite evident from results that Poole–Frenkel conduction mechanisms hold good for conduction in these glasses in a given temperature range. The variation in electrical conductivity with composition was attributed to the Se–Sb bond concentration in the Se–Ge–Sb system. Results indicated that Ge$_5$Se$_{70}$Sb$_{25}$ showed the minimum resistance. In view of this the composition Ge$_5$Se$_{70}$Sb$_{25}$ may be coined as ‘critical composition’ in the proposed series. Also the activation energies of conduction of these glassy alloys have been calculated in higher and lower temperature range using the Arrhenius equation.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.