• Ch Subrahmanyam

      Articles written in Bulletin of Materials Science

    • Effect of carbon nanofibre addition on the mechanical properties of different 𝑉f carbon-epoxy composites

      I Srikanth Suresh Kumar Vajinder Singh B Rangababu Partha Ghosal Ch Subrahmanyam

      More Details Abstract Fulltext PDF

      Carbon-epoxy (C-epoxy) laminated composites having different fibre volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of aminofunctionalized carbon nanofibres (A-CNF). Flexural strength, interlaminar shear strength (ILSS) and tensile strength of the composite laminates were determined. It was observed that, the ability of A-CNF to enhance the mechanical properties of C-epoxy diminished significantly as the fibre volume fraction (𝑉f) of the C-epoxy increased from 40 to 60. At 70𝑉f, the mechanical properties of the A-CNF reinforced C-epoxy were found to be lower compared to the C-epoxy composite made without the addition of A-CNF. In this paper suitable mechanisms for the observed trends are proposed on the basis of the fracture modes of the composite.

    • Effect of high-temperature heat treatment duration on the purity and microstructure of MWCNTs

      I Srikanth N Padmavathi P S R Prasad P Ghosal R K Jain Ch Subrahmanyam

      More Details Abstract Fulltext PDF

      The effect of high-temperature heat treatment on purity and structural changes of multiwalled carbon nanotubes (MWCNTs) were studied by subjecting the raw MWCNTs (pristine MWCNTs) to 2600°C for 60 and 120 min. Thermogravimetric analysis (TGA), X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to study the effect of heat-treatment duration on the purity and structural changes of MWCNTs. Results show that high-temperature heat treatment can be used to purify MWCNTs with proper optimization of treatment time. It was observed that 60 min heat treatment of raw MWCNTs imparts high purity and structural perfection to MWCNTs, while 120 min heat treatment imparts structural degradation to MWCNTs with collapse of the innermost shells. The present study indicates that metal impurities act as moderators in controlling the degradation of MWCNTs up to certain duration, and once the metal impurities escape completely, further heat treatment degrades the structure of MWCNTs.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.