• C D Lokhande

      Articles written in Bulletin of Materials Science

    • Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method

      H M Pathan C D Lokhande

      More Details Abstract Fulltext PDF

      During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, semiconductors, metals and temperature sensitive substrates (like polyester) can be used since the deposition is carried out at or near to room temperature. As a low temperature process, it also avoids oxidation and corrosion of the substrate. The prime requisite for obtaining good quality thin film is the optimization of preparative provisos viz. concentration of the precursors, nature of complexing agent, pH of the precursor solutions and adsorption, reaction and rinsing time durations etc.

      In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, optical, electrical properties etc are described. Theoretical background necessary for the SILAR method is also discussed.

    • Chemical synthesis and characterization of hydrous tin oxide (SnO2:H2O) thin films

      S N Pusawale P R Deshmukh C D Lokhande

      More Details Abstract Fulltext PDF

      In the present investigation, we report chemical synthesis of hydrous tin oxide (SnO2:H2O) thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature (∼300 K). The films are characterized for their structural and surface morphological properties. The formation of nanocrystalline SnO2 with porous and agglomerated particle morphology is revealed from X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, respectively. The Fourier transform infrared spectroscopy (FTIR) study confirmed the formation of Sn–O phase and hydrous nature of the deposited film. Static water contact angle studies showed the hydrophilic nature of SnO2:H2O thin film. Electrical resistivity showed the semiconducting behaviour with room temperature electrical resistivity of 105 𝛺 cm. The electrochemical properties studied in 0.5 M Na2SO4 electrolyte showed a specific capacitance of 25 F g-1 at 5 mVs-1 scan rate.

    • Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties

      P R Deshmukh U M Patil K V Gurav S B Kulkarni C D Lokhande

      More Details Abstract Fulltext PDF

      In the present investigation, TiO2, CdS and TiO2/CdS bilayer system have been deposited on the fluorine doped tin oxide (FTO) coated glass substrate by chemical methods. Nanograined TiO2 was deposited on FTO coated glass substrates by successive ionic layers adsorption and reaction (SILAR) method. Chemical bath deposition (CBD)method was employed to deposit CdS thin film on pre-deposited TiO2 film. A further study has beenmade for structural, surface morphological, optical and photoelectrochemical (PEC) properties of FTO/TiO2, FTO/CdS and FTO/TiO2/CdS bilayers system. PEC behaviour of FTO/TiO2/CdS bilayers was studied and compared with FTO/CdS single system. FTO/TiO2/CdS bilayers system showed improved performance of PEC properties over individual FTO/CdS thin films.

    • Supercapacitive performance of hydrous ruthenium oxide (RuO2.𝑛H2O) thin films synthesized by chemical route at low temperature

      P R Deshmukh S N Pusawale R N Bulakhe C D Lokhande

      More Details Abstract Fulltext PDF

      In the present investigation, we report the synthesis of ruthenium oxide (RuO2.𝑛H2O) thin films by simple chemical bath deposition (CBD) method at low temperature on the stainless steel substrate. The prepared thin films are characterized for their structural and morphological properties by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). The structural study revealed that the ruthenium oxide thin films are amorphous. Scanning electron microscopy study shows compact morphology with small overgrown particles on the surface of the substrate. FT–IR study confirms the formation of RuO2.𝑛H2O material. The supercapacitor behaviour of RuO2.𝑛H2O thin film was studied using cyclic voltammetry (CV) technique in 0.5 M H2SO4 electrolyte. RuO2.𝑛H2O film showed maximum specific capacitance of 192 F.g-1 at a scan rate of 20 mV.s-1. The charge–discharge studies of RuO2.𝑛H2O carried out at 300 𝜇A.cm-2 current density revealed the specific power of 1.5 kW.kg-1 and specific energy of 41.6Wh.kg-1 with 95% coulombic efficiency.

    • Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour

      U M Patil K V Gurav J H Kim C D Lokhande S C Jun

      More Details Abstract Fulltext PDF

      Nanostructured Ni(OH)2 thin films were deposited over stainless steel (SS) and glass substrate via simple chemical bath deposition (CBD) method. NiCl2 :6H2O were used as source of nickel and aqueous ammonia as a complexing agent. The coating process of Ni(OH)2 material over substrate is based on the decomposition of ammonia complexed nickel ions at two different bath temperatures. The changes in structural, morphological and electro-chemical properties are examined as an impact of bath temperature. XRD studies reveal formation of mixed phase of 𝛼 and 𝛽 at lower bath temperature (313 K) while, pure 𝛽 phase of Ni(OH)2 thin films deposited was observed at higher bath temperature (353 K). The morphological evolution from honeycomb structure to vertically aligned flakes over the substrate is observed as the influence of bath temperature. The supercapacitive performance based on the morphology examined by using cyclic voltammetric measurements in 1 M KOH. The maximum specific capacitances of 610 and 460 F/g were observed for the vertical flake and honeycomb structured Ni(OH)2 thin films, respectively.

© 2017-2019 Indian Academy of Sciences, Bengaluru.