• Boyang Liu

      Articles written in Bulletin of Materials Science

    • A novel method for preparation of hollow and solid carbon spheres

      Boyang Liu Dechang Jia Jiancun Rao Qiangchang Meng Yingfeng Shao

      More Details Abstract Fulltext PDF

      Hollow and solid carbon spheres were prepared by the reaction of ferrocene and ammonium carbonate in a sealed quartz tube at 500°C. The morphology and microstructure of the product were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The carbon spheres are amorphous and their diameters range from 0.8–2.8 𝜇m. The shell thickness of the hollow carbon spheres is not uniform and ranges from 100–180 nm. It is suggested that ammonium carbonate is crucial for the formation of carbon spheres and its amount also influences the morphology of the product. The method may be suitable for large scale preparation of carbon spheres.

    • Effect of heat treatment temperature on microstructure and electrochemical properties of hollow carbon spheres prepared in high-pressure argon

      Boyang Liu Yun Zhou Dechang Jia Pengjian Zuo Yingfeng Shao Jingwei Zhang

      More Details Abstract Fulltext PDF

      Heat treatment was carried out between 800 and 1200°C to investigate its effects on the microstructure and electrochemical properties of the hollow carbon spheres (HCSs) prepared in high-pressure argon. Samples were characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy and N2 adsorption–desorption isotherms. The graphitization of the HCSs was improved with increase of heat treatment temperature. Mesopores of 𝑐𝑎. 4 nm in diameter were created on the HCSs after the heat treatment. The results of electrochemical performance measurements for the HCSs as anode material for lithium ion batteries indicate that the discharge capacity of the HCSs is improved after heat treatment at 800°C compared with the as-prepared HCSs and have a maximum value of 357 mAh/g and still retains 303 mAh/g after 40 cycles. However, the discharge capacity of the HCSs decreases and the cycling performance is improved with the increase of heat treatment temperature.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.