• B N Dev

      Articles written in Bulletin of Materials Science

    • Proton microbeam irradiation effects on PtBA polymer

      J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam

      More Details Abstract Fulltext PDF

      Proton beam lithography has made it possible to make various types of 3D-structures in polymers. Usually PMMA, SU-8, PS polymers have been used as resist materials for lithographic purpose. Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface of PtBA polymer is studied using the optical and secondary electron microscopic experimental methods.

    • ZnO 1-D nanostructures: Low temperature synthesis and characterizations

      Apurba Dev S Chaudhuri B N Dev

      More Details Abstract Fulltext PDF

      ZnO is one of the most important semiconductors having a wide variety of applications in photonic, field emission and sensing devices. In addition, it exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the ZnO crystal. Among various nanostructures, oriented 1-D nanoforms are particularly important for applications such as UV laser, sensors, UV LED, field emission displays, piezoelectric nanogenerator etc. We have developed a soft chemical approach to fabricate well-aligned arrays of various 1-D nanoforms like nanonails, nanowires and nanorods. The microstructural and photoluminescence properties of all the structures were investigated and tuned by varying the synthesis parameters. Field emission study from the aligned nanorod arrays exhibited high current density and a low turn-on field. These arrays also exhibited very strong UV emission and week defect emission. These structures can be utilized to fabricate efficient UV LEDs.

© 2017 Indian Academy of Sciences, Bengaluru.