• Archana Nigrawal

      Articles written in Bulletin of Materials Science

    • Investigations on gradient a.c. conductivity characteristics of bamboo (Dendrocalamus strictus)

      Navin Chand Deepak Jain Archana Nigrawal

      More Details Abstract Fulltext PDF

      Effect of temperature and frequency variation on a.c. conductivity of bamboo was determined by using a 4274 A Multi-Frequencies LCR meter. Electrical measurements were carried out in the temperature range 24–120°C and in the frequency range 4–100 kHz. It was observed that the a.c. conductivity increased initially and then decreased with increase of temperature and frequencies. The increase of distance from outer surface to the inner surface side increased the a.c. conductivity values and showed the grading in a.c. conductivity behaviour. Two phases of a.c. conductivity behaviour with temperature exist in bamboo. At 10 mm distance a.c. conductivity suddenly increases which is the critical depth from skin for this bamboo. Increase of temperature, at all the frequencies increases the a.c. conductivity initially and then decreases. Downward peaks in a.c. conductivities are observed at all the frequencies due to the presence of moisture in bamboo, which liberated on heating. Sharp peak is observed in case of sample 4, which is inner most strip. Maximum sharp peak is observed at lowest 4 kHz frequency.

    • Investigations on d.c. conductivity behaviour of milled carbon fibre reinforced epoxy graded composites

      Navin Chand Archana Nigrawal

      More Details Abstract Fulltext PDF

      This paper reports the d.c. conductivity behaviour of milled carbon fibre reinforced polysulphide modified epoxy gradient composites. Milled carbon fibre reinforced composites having 3 vol. % of milled carbon fibre and poly sulphide modified epoxy resin have been developed. D.C. conductivity measurements are conducted on the graded composites by using an Electrometer in the temperature range from 26°C to 150°C. D.C. conductivity increases with the increase of distance in the direction of centrifugal force, which shows the formation of graded structure with the composites. D.C. conductivity increases on increase of milled carbon fibre content from 0.45 to 1.66 vol.%. At 50°C, d.c. conductivity values were 1.85 × 10-11, 1.08 × 10-11 and 2.16 × 10-12 for samples 1, 2 and 3, respectively. The activation energy values for different composite samples 1, 2 and 3 are 0.489, 0.565 and 0.654 eV, respectively which shows decrease in activation energy with increase of fibre content.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.