Ameneh Eshaghi
Articles written in Bulletin of Materials Science
Volume 35 Issue 2 April 2012 pp 137-142
In this paper, TiO2–SiO2–In2O3 nano layer thin films were deposited on glass substrate using sol–gel dip coating method. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements were used to evaluate chemical structure, surface composition, hydroxyl group contents and superhydrophilicity of titania films. FTIR result indicated that Si–O–Si, Si–O–Ti and Ti–O–Ti bands formed in TiO2–SiO2–In2O3 sample. According to XPS, the hydroxyl content for TiO2, TiO2–SiO2 and TiO2–SiO2–In2O3 films was calculated as 11.6, 17.1 and 20.7%, respectively. The water contact angle measurements indicated that silica and indium oxide dopant improved the superhydrophilicity of titania nano film surface especially in a dark place. The enhanced superhydrophilicity can be related to the generation of surface acidity on the titania nano film surfaces. In the present state, superhydrophilicity is induced by the simultaneous presence of both Lewis and Bronsted sites.
Volume 36 Issue 1 February 2013 pp 59-63
In this work, copper grafted titanium dioxide (rutile and brookite) thin films were deposited on glass substrates using the dip-coatingmethod. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to evaluate the surface morphology and properties of the film surfaces. The water contact angle on the film surfaces during irradiation and storage in a dark place was measured by a contact angle analyser. The results indicate that copper grafted titanium dioxide brookite thin film showed higher hydrophilicity than copper grafted titania rutile thin film.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.