• A BOUHEMADOU

      Articles written in Bulletin of Materials Science

    • Structural, elastic, optoelectronic and magnetic properties of CdHo$_2$S$_4$ spinel: a first-principle study

      I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R AHMED SALEEM A KHAN A BOUHEMADOU SIKANDER AZAM S BIN OMRAN

      More Details Abstract Fulltext PDF

      We report the results of the full-potential linearized augmented plane wave (FP-LAPW) calculations on the structural, elastic, optoelectronic and magnetic properties of CdHo$_2$S$_4$ spinel. Both the generalized gradient approximation (GGA) and Trans-Blaha modified Becke-Johnson potential (TB-mBJ) are used to model the exchange-correlation effects. The computed lattice parameter, internal coordinate and bulk modulus are in good agreement with the existing experimentaldata. According to the calculated elastic moduli, CdHo$_2$S$_4$ is mechanically stable with a ductile nature and a noticeableelastic anisotropy. The ferromagnetic phase of CdHo2S4 is energetically favourable compared to non-magnetic one, with ahigh magnetic moment of about 8.15 $\mu$B. The calculated band structure demonstrates that the title compound is a direct bandgap semiconductor. The TB-mBJ yields a band gap of $\sim$1.86 and $\sim$2.17 eV for the minority and majority spins, respectively.The calculated optical spectra reveal a strong response in the energy range between the visible light and the extreme UVregions.

    • A study on the vibrational frequencies, elastic properties and sound velocities of vanadium spinel oxides AV$_2$O$_4$ (A $=$ Mn, Fe and Zn) short-range non-Coulomb potential theoretical model

      A K KUSHWAHA R KHENATA A BOUHEMADOU S AKBUDAK R AHMED

      More Details Abstract Fulltext PDF

      Owing to the fact of the AB$_2$O$_4$ spinel oxide’s chemical and thermal stability, and other intriguing properties make them suitable candidate materials for many applications, including chemical looping and catalytic reactions. To do our investigations, a short-range non-Coulomb potential theoretical model is used to calculate the zone-centre, elastic constants, infrared phonon mode frequencies, Raman phonon mode frequencies, velocities of the sound wave along the highly symmetric three crystallographic-axes and Debye temperature of the vanadium spinel oxides AV$_2$O$_4$ (A $=$ Mn, Fe and Zn). The preliminary results of our calculations show that the interaction inthe second neighbour (V–O) is much stronger than the interaction of the first neighbour (A–O). Moreover, from the analysis of the obtained results of elastic constants, the nature of the studied vanadium spinels are found to beductile.

    • Temperature effect to investigate optical and structural properties of AZO nanostructures for optoelectronics

      K GHERAB Y AL-DOURI U HASHIM R KHENATA A BOUHEMADOU M AMERI

      More Details Abstract Fulltext PDF

      Spin-coating technique is employed to deposit nanostructured zinc oxide (ZnO) doping aluminium (Al) on p-Si substrate. Atomic forces microscopy (AFM), X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) and scanning electron microscopies (SEM) are utilized to investigate the influence of annealing temperature in the range of 200 to 600$^{\circ}$C on the morphological, optical, structural and topographical characteristics of Al NPs-doped ZnO (AZO) nanostructure. The average reflectance is proven by the reflectance spectra to be in the wavelength range of 200–1000 nm, and the absorption spectra provided the optical energy gaps of nanostructured AZO. Crystalline and grain size are correlatedwith annealing temperature variations, thus providing more homogeneous and covered surface morphology. Our resultsare nominated for future researches.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.