• A Zendehnam

      Articles written in Bulletin of Materials Science

    • Influence of deposition rate on PL spectrum and surface morphology of ZnO nanolayers deposited on Si (100) substrate

      A Zendehnam M Mirzaee S Miri

      More Details Abstract Fulltext PDF

      Zinc oxide (ZnO) thin films were deposited on Si (100) substrate through sputtering of zinc by DC magnetron, followed by thermal oxidation. Different deposition rates were used in coating films with 100 nm thickness (0.6–4.5 nm/s). Photoluminescence spectra of the produced samples were obtained and it was found that the violet emission peak intensity increases with deposition rate. Scanning electron microscopy (SEM) micrograph and atomic force microscopy (AFM) images for the zinc oxide films were obtained. Morphological changes due to various deposition rate are discussed in the light of changes observed in the ZnO crystals. Low coating rates produced smooth surface with small grains while higher deposition rates increased the surface roughness and larger grain size. AFM and SEM results are in good agreement and support the PL results.

    • Effect of oxidation and annealing temperature on optical and structural properties of SnO2

      M Zarrinkhameh A Zendehnam S M Hosseini N Robatmili M Arabzadegan

      More Details Abstract Fulltext PDF

      Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. The effect of oxidation temperature on the optical and structural properties of SnO2 films were investigated. Higher transmittance, lower absorption and lesser structural defects were obtained at higher temperatures. Optical bandgap increases with temperature, while the Urbach energy showed reduction. The X-ray diffraction studies showed that at lower temperatures (300, 350 °C), a combined phase of SnO and SnO2 was obtained, while at higher temperatures (400, 450 °C), a nearly polycrystalline SnO2 film with preferred orientation of (101) was produced. Annealing of the samples at 500–650 °C caused the transmittance and optical bandgap increased, while the absorption decreased. Reduction of the Urbach energy after annealing could be attributed to the reduction of the degree of thermal disorder. AFM studies showed that although the thin films were annealed under similar condition, their roughness was not similar because of different oxidation temperatures, which means that initial oxidation temperature played an important role on surface uniformity of SnO2 thin films.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.