• A S Singha

      Articles written in Bulletin of Materials Science

    • Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre

      A S Singha Anjali Shama Vijay Kumar Thakur

      More Details Abstract Fulltext PDF

      In the present work, graft co-polymerization of acrylonitrile (AN) onto Saccharum cilliare fibre has been carried out in the presence of potassium persulphate and ferrous ammonium sulphate (FAS–KPS) as redox initiator. The reactions were carried out under pressure in an autoclave. Various reaction parameters such as pressure, time, pH, concentrations of initiator and monomer were optimized to get maximum graft yield (35.59%). Grafted and ungrafted Saccharum cilliare fibres were then subjected to evaluation of some of their properties like swelling behaviour in different solvents, moisture absorbance under different humidity levels, water uptake and resistance towards chemicals such as hydrochloric acid and sodium hydroxide. The characterization of the graft copolymers were carried out by FTIR spectrophotometer, X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies.

    • Mechanical properties of natural fibre reinforced polymer composites

      A S Singha Vijay Kumar Thakur

      More Details Abstract Fulltext PDF

      During the last few years, natural fibres have received much more attention than ever before from the research community all over the world. These natural fibres offer a number of advantages over traditional synthetic fibres. In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed Hibiscus sabdariffa fibre reinforced polymer composites such as tensile, compressive and wear properties were investigated as a function of fibre loading. Initially urea–formaldehyde resin prepared was subjected to evaluation of its optimum mechanical properties. Then reinforcing of the resin with Hibiscus sabdariffa fibre was accomplished in three different forms: particle size, short fibre and long fibre by employing optimized resin. Present work reveals that mechanical properties such as tensile strength, compressive strength and wear resistance etc of the urea–formaldehyde resin increases to considerable extent when reinforced with the fibre. Thermal (TGA/DTA/DTG) and morphological studies (SEM) of the resin and biocomposites have also been carried out.

    • Fabrication and characterization of S. cilliare fibre reinforced polymer composites

      A S Singha Vijay Kumar Thakur

      More Details Abstract Fulltext PDF

      In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as a novel matrix has been reported. A systematic approach for processing of polymer is presented. Effect of fibre loading on mechanical properties like flexural, tensile, compressive and wear resistances has also been determined. Reinforcing of the RF resin with Saccharum cilliare (SC) fibre was done in the form of particle size (200 micron). Present work reveals that mechanical properties of the RF resin have been found to increase up to 30% fibre loading and then decreases. Morphological and thermal studies of the resin, fibre and particle reinforced (P-Rnf) green composites have also been studied.

    • Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites

      Vijay Kumar Thakur A S Singha

      More Details Abstract Fulltext PDF

      Lack of resources and increasing environmental pollution has evoked great interest in the research of materials that are friendly to our health and environment. Polymer composites fabricated from natural fibres is currently the most promising area in polymer science. Keeping in view the various advantages of natural fibres, in current series of green composites a study on natural fibre reinforced polymer composites has been made. This paper presents the results of an experimental series designed to assess the possibility of Pine needles as reinforcing material in polymer composites. First of all, urea–formaldehyde resin was synthesized and optimized by evaluating its mechanical properties. Optimized resin was reinforced with employing Pine needles of different dimensions such as particle reinforcement, short fibre reinforcement and long fibre reinforcement. Experimental results obtained shows that mechanical properties such as tensile strength, compressive strength and wear resistance of UF resin increases to a considerable extent when reinforced with Pine needles. Further it has been observed that particle reinforcement is more effective as compared to short fibre and long fibre reinforcement. These results suggest that Pine needles can be potential candidates for use in natural fibre reinforced polymer composites. Thermal and morphological studies of these composites have also been carried out.

    • Fabrication of polystyrene/agave particle biocomposites using compression molding technique: evaluation of flammability, biodegradability, mechanical and thermal behaviour

      A S Singha Raj K Rana

      More Details Abstract Fulltext PDF

      Polystyrene (PS) composites reinforced with ungrafted and acrylonitrile (AN) grafted agave particles (AgP) have been prepared with 10–30% particle content by weight using compression molding technique. The composite specimens thus prepared were subjected to the evaluation of mechanical, chemical, flammability and biodegradability properties. PS composites with 20% particle loading exhibited optimum mechanical properties. AN grafted AgP/PS composites exhibited higher mechanical strength as compared to ungrafted AgP/PS composites. Further AN grafted AgP/PS composites exhibited better thermal properties and biodegradability as compared to PS matrix. Addition of fire retardant fillers such as magnesium hydroxide Mg(OH)2 and zinc borate lowered burning rate of PS composites considerably. Scanning electron microscopy (SEM) of tensile fracture surfaces of AN grafted AgP/PS composites showed better particle/matrix adhesion.

© 2017-2019 Indian Academy of Sciences, Bengaluru.