• A Ray

      Articles written in Bulletin of Materials Science

    • A novel method for sensing rotational speed, linear displacement and current using superconducting BPSCCO magnetic sensor

      T K Dey A Ray S K Ghatak

      More Details Abstract Fulltext PDF

      For many decades, magnetic sensors have been of great assistance to mankind in variety of functions that include simple compass based navigational systems to devices that monitor the invisible biological activities. In industries magnetic sensors are in great demand for control and measurement of linear and rotary position sensing etc, because of its non destructive and contact less way of detection. Consequently, newer, smarter and cheaper materials are continuously being explored to suit the varied needs of technological requirements. In the present communication, the characteristics of a magnetic sensor, based on the non linear electromagnetic response of the weak links present in the polycrystalline BPSCCO superconductor are reported. The second harmonic response of sintered superconducting BPSCCO pellet in an alternating magnetic field at 40 kHz and 77 K being a strong linear function of low d.c. magnetic field has been utilized for the development of highly sensitive magnetic field sensors. The noise limited resolution of the sensor is found to be 3.16 × 10–9 T/√ Hz for $H_{a.c.}$ = 16 Oe and frequency 40 kHz. We further demonstrate that such HTSC based magnetic sensors are capable of sensing the rotational speed, small displacement and direct current with good resolution. The experimental methods and results obtained are discussed.

    • Effect of transient change in strain rate on plastic flow behaviour of low carbon steel

      A Ray P Barat P Mukherjee A Sarkar S K Bandyopadhyay

      More Details Abstract Fulltext PDF

      Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.