• A K Bajpai

      Articles written in Bulletin of Materials Science

    • Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer

      Sangita Rajvaidya R Bajpai A K Bajpai

      More Details Abstract Fulltext PDF

      The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile. Various compositions of gluteraldehyde crosslinked gelatin and N,N′-methylene-bis-acrylamide crosslinked PAN were characterized by SEM and DSC techniques. The IPNs were also thermally pretreated by the annealing process. The effects of annealing temperature on the microhardness of IPNs were studied using the Vickers method. SEM indicates the homogeneous morphological features for IPN. The role of gelatin, AN and crosslinker on the developed hard biopolymer has been described with the help of DSC thermograms and microhardness measurements of annealed specimens and good correlation is observed.

    • Evaluation of starch based cryogels as potential biomaterials for controlled release of antibiotic drugs

      L P Bagri J Bajpai A K Bajpai

      More Details Abstract Fulltext PDF

      In the present study starch has been blended with poly(vinyl alcohol) to design macroporous architectures following a repeated freeze-thaw method. These macroporous cryogels were loaded with an antibiotic drug, ciprofloxacin hydrochloride (Cfx), and evaluated for its in vitro delivery in a completely controlled manner thus exploring possibilities to use it as a biomaterial in burn or wound healing applications. The key advantage of the present system is that cryogels formed do not contain any chemical crosslinking agent which is often harmful to organic compounds. These Cfx loaded cryogels were characterized by infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The controlled release of Cfx drug from cryogels was investigated under varying experimental conditions such as percent loading of the antibiotic drug, chemical architecture of the cryogels and pH, temperature, and nature of the release media. The prepared cryogels show promise to provide a possible pathway for controlling delivery of antibiotic drug thus minimizing the known side effects and improving efficacy also.

    • Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles

      A K Bajpai Sweta Likhitkar

      More Details Abstract Fulltext PDF

      The present study follows a novel strategy for the preparation of superparamagnetic nanoparticles of cross-linked starch impregnated homogeneously with nanosized iron oxide. The prepared magnetic nanoparticles were characterized by infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction and magnetization studies. The size of the magnetic polymeric particles was found to lie in the range of 20–80 nm, and they exhibited superparamagnetic properties. The particles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to provide a possible option for controlled and targeted delivery of anticancer drugs, applying external magnetic field.

© 2017-2019 Indian Academy of Sciences, Bengaluru.