• Issue front cover thumbnail

      Volume 83, Issue 2

      August 2014,   pages  165-291

    • Preface

      Ashok Vudayagiri P Prem Kiran K P Subramanian

      More Details Abstract Fulltext PDF
    • Effect of pairwise dipole–dipole interaction among three-atom systems

      P Anantha Lakshmi Ashoka Vudayagiri Shaik Ahmed

      More Details Abstract Fulltext PDF

      We present an analysis of a system of three two-level atoms interacting with one another through dipole–dipole interaction. The interaction manifests between the excited state of one of the atoms and the ground state of its nearest neighbour. Steady-state populations of the density matrix elements are presented and are compared with a situation when only two atoms are present. It can be noticed that the third atom modifies the behaviour of the three atoms. Two configurations are analysed, one in which the three atoms are in a line, with no interaction between atoms at the end points and the other in which the atoms form a closed loop with one atom interacting with both its neighbours.

    • Application of laser-induced breakdown spectroscopy in carbon sequestration research and development

      Jinesh Jain Dustin Mcintyre Krishna Ayyalasomayajula Vivek Dikshit Christian Goueguel F Yu-Yueh Jagdish Singh

      More Details Abstract Fulltext PDF

      The success of carbon capture and storage (CCS) programme relies on the long-term isolation of CO2 from the atmosphere. Therefore, technologies concomitant to physical storage of CO2 such as reliable measurement, monitoring, and verification (MMV) techniques are needed to ensure that the integrity of the storage site is maintained. We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time monitoring capability and can be reliably used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fibre optics make it a suitable technique for real-time measurements in harsh conditions and at hard-to-reach places. Proposed monitoring with LIBS includes terrestrial soil samples, water samples from monitoring wells or from different formations, air samples from monitoring wells or suspected leakage areas. This work details the laboratory scale experiments to measure carbon contents in soil, aqueous, and air samples. The potential of the technology for measurements in high-pressure, high-temperature conditions has been discussed.

    • Precision two-photon spectroscopy of alkali elements

      P V Kiran Kumar M V Suryanarayana

      More Details Abstract Fulltext PDF

      In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and precision measurements of isotope shifts and hyperfine structures (HFS) is presented. Some of the recent works on precision measurements of HFS constants of 6𝑠 ${}^2S_{1/2}$ level of ${}^{39}$K and ${}^{41}$K, 9𝑠 ${}^2S_{1/2}$ level and 7𝑑 ${}^2D_{3/2}$ level of 133Cs are also discussed.

    • Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

      A Couairon A Lotti D Faccio P Di Trapani D S Steingrube E Schulz T Binhammer U Morgner M Kovacev M B Gaarde

      More Details Abstract Fulltext PDF

      Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

    • Entanglement and discord for qubits and higher spin systems

      A R P Rau

      More Details Abstract Fulltext PDF

      We discuss aspects of entanglement and quantum discord, two of the quantum correlations that are of much interest in the field of quantum information. Their definitions and handling will be discussed, with simple illustrative examples. A specific example is of entanglement decay resulting from a simple dissipative process and how to alter that decay. An analytical prescription for computing quantum discord when a qubit (spin-1/2 or two-level quantum system) is involved is presented along with applications, and its generalization to higher spins (many levels) indicated.

    • Interaction of ultrashort pulses with molecules and solids: Physics and applications

      S Venugopal Rao

      More Details Abstract Fulltext PDF

      The interaction of ultrashort laser pulses with molecules and solids is an extremely complex area of science research encompassing the fields of physics, chemistry, and materials science. The physics of interaction has been fairly understood over the last couple of decades and, consequently, several applications have been envisaged from these interactions in the fields of photonics, lithography, biomedicine, sensing, telecommunications etc. In the present article we describe three different components of interaction of ultrashort pulses with matter: (1) with liquid molecules/thin films wherein we present the results from our studies of optical nonlinearities predominantly using picosecond and femtosecond pulses, (2) with molecules/solids wherein plasma generated from the surface was studied for applications in understanding the molecular dynamics and towards identifying high-energy molecules and (3) within the bulk and on the surface of solids (e.g. glasses, bulk polymers and metals) resulting in micro- and nanostructures. Different applications resulting from such interactions in photonics and microfluidics are presented and discussed.

    • Role of the multipolar black-body radiation shifts in the atomic clocks at the 10-18 uncertainty level

      B K Sahoo

      More Details Abstract Fulltext PDF

      We present here an overview of the role of the multipolar black-body radiation (BBR) shifts in the single ion atomic clocks to appraise the anticipated 10-18 uncertainty level. With an attempt to use the advanced technologies for reducing the instrumental uncertainties at the unprecedented low, it is essential to investigate contributions from the higher-order systematics to achieve the ambitious goal of securing the most precise clock frequency standard. In this context, we have analysed contributions to the BBR shifts from the multipolar polarizabilities in a few ion clocks.

    • Multiscale simulations of damage of perfect crystal Cu at high strain rates

      S Rawat M Warrier S Chaturvedi V R Ikkurthi

      More Details Abstract Fulltext PDF

      We use the molecular dynamics code, large-scale atomic/molecular massively parallel simulator (LAMMPS), to simulate high strain rate triaxial deformation of crystal copper to understand void nucleation and growth (NAG) within the framework of an experimentally fitted macroscopic NAG model for polycrystals (also known as DFRACT model). It is seen that void NAG at the atomistic scales for crystal copper (Cu) has the same qualitative behaviour as the DFRACT model, albeit with a different set of parameters. The effect of material temperature on the nucleation and growth of voids is studied. As the temperature increases, there is a steady decrease in the void NAG thresholds and close to the melting point of Cu, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows disappearance of the long-range order due to the creation of stacking faults and the system no longer has a face centred cubic (fcc) structure. Molecular dynamics simulation of shock in crystal Cu at strain rates high enough to cause spallation of crystal Cu are then carried out to validate the void NAG parameters. We show that the pre-history of the material affects the void nucleation threshold of the material. We also simulate high-strain-rate triaxial deformation of crystal Cu with defects and obtain void NAG parameters. The parameters are then used in a macroscale hydrodynamic simulation to obtain spallation threshold of realistic crystal Cu. It is seen that our results match experimental results within the limit of 20% error.

    • Compacton-like solutions for modified KdV and nonlinear Schrödinger equation with external sources

      Thokala Soloman Raju C Nagaraja Kumar Prasanta K Panigrahi

      More Details Abstract Fulltext PDF

      We present new types of compacton-like solutions for modified KdV and nonlinear Schrödinger equation with external sources, using a recently developed fractional transformation. In particular, we explicate these novel compactons for the trigonometric case, and compare their properties with those of the compactons and solitons in the case of modified KdV equation. Keeping in mind the significance of nonlinear Schrödinger equation with external source, for pulse propagation through asymmetric twin-core fibres, we hope that the newly found compacton may be launched in a long-haul telecommunication network utilizing asymmetric twin-core fibres.

    • Entangling capabilities of symmetric two-qubit gates

      Swarnamala Sirsi Veena Adiga Subramanya Hegde

      More Details Abstract Fulltext PDF

      Our work addresses the problem of generating maximally entangled two spin-1/2 (qubit) symmetric states using NMR, NQR, Lipkin–Meshkov–Glick Hamiltonians. Time evolution of such Hamiltonians provides various logic gates which can be used for quantum processing tasks. Pairs of spin-1/2s have modelled a wide range of problems in physics. Here, we are interested in two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis $\{|j = 1,\mu\langle; \mu = + 1, 0, -12\}$. Our technique relies on the decomposition of a Hamiltonian in terms of $SU$(3) basis matrices. In this context, we define a set of linearly independent, traceless, Hermitian operators which provides an alternate set of $SU(n)$ generators. These matrices are constructed out of angular momentum operators J$_x$, J$_y$, J$_z$. We construct and study the properties of perfect entanglers acting on a symmetric subspace, i.e., spin-1 operators that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power.

    • List of Participants

      More Details Abstract Fulltext PDF
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.