• Volume 65, Issue 5

      November 2005,   pages  768a-980

    • Foreword

      A K Sood K N Ganesh C S Sundar A K Raychaudhuri

      More Details Abstract Fulltext PDF
    • A single molecule switch based on two Pd nanocrystals linked by a conjugated dithiol

      Ved Varun Agrawal Reji Thomas G U Kulkarni C N R Rao

      More Details Abstract Fulltext PDF

      Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd nanocrystals (dia. ∼5 nm) electronically coupled by a conducting molecule, dimercaptodiphenylacetylene. TheI-V data, obtained by positioning the tip over a nanocrystal electrode, exhibit negative differential resistance (NDR) on a background M-I-M characteristics. The NDR feature occurs at ∼0.67 V at 300 K and shifts to a higher bias of 1.93 V at 90 K. When the tip is held in the middle region of the device, a Coulomb blockade region is observed (±∼0.3 V)

    • Optically-driven red blood cell rotor in linearly polarized laser tweezers

      Manas Khan Samarendra K Mohanty A K Sood

      More Details Abstract Fulltext PDF

      We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and become twisted in hypertonic phosphate buffer saline and when trapped, experience an unbalanced radiation pressure force. The torque generated from the unbalanced force causes the trapped RBC to rotate. Addition of Ca++ ions in the solution, keeping the osmolarity same, makes the cell membranes stiffer and the cells deform less. Thus the speed of rotation of the red blood cells can be controlled, as less deformation and in turn less asymmetry in shape produces less torque under the radiation pressure resulting in slower rotation at the same laser power

    • Synthesis and characterization of silica—titania core—shell particles

      Suchita Kalele Ravi Dey Neha Hebalkar J Urban S W Gosavi S K Kulkarni

      More Details Abstract Fulltext PDF

      Nearly monodispersed particles of silica were prepared and coated with uniform layers of titanium dioxide in anatase phase by hydrolysis and condensation of titanium butoxide. The coating thickness could be altered by adjusting the concentration of reactants (titanium butoxide and water) and the amount of added silica particles. Different coating thicknesses were deposited and studied using optical absorption spectroscopy, electron microscopy and Fourier transform infra-red spectroscopy. It was found that silica particles of size 170 ±5 nm were coated with 23±5 nm thick layer of titanium dioxide. Alternatively titania particles of size 340±5 nm were synthesized by controlled hydrolysis of titanium ethoxide in the presence of sodium chloride. These particles were further coated with 135±5 nm thick layer of silica to investigate changes in properties after changing the shell material

    • Synthesis and characterization of nanophased silver tungstate

      Thresiamma George Sunny Joseph Suresh Mathew

      More Details Abstract Fulltext PDF

      Silver tungstate (Ag2WO4) nanoparticles in two different morphologies are prepared by controlling the reaction kinetics of aqueous precipitation. X-ray diffraction studies reveal that the silver tungstate nanoparticles are in the α-phase. SEM images show the rod-like and fiber-like morphologies of the nanoparticles with high aspect ratios. The TGA and DTA studies show the high thermal stability of the nanorods. The average crystallite sizes (20–30 nm) of the rod-like silver tungstate estimated from TEM is consistent with the XRD results

    • Characterization of chemically synthesized CdS nanoparticles

      Rajeev R Prabhu M Abdul Khadar

      More Details Abstract Fulltext PDF

      II-VI semiconductor nanoparticles are presently of great interest for their practical applications such as zero-dimensional quantum confined materials and for their applications in optoelectronics and photonics. The optical properties get modified dramatically due to the confinement of charge carriers within the nanoparticles. Similar to the effects of charge carriers on optical properties, confinement of optical and acoustic phonons leads to interesting changes in the phonon spectra. In the present work, we have synthesized nanoparticles of CdS using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The UV-visible absorption, photoluminescence and Raman spectra of the sample are recorded and discussed briefly

    • Growth of zinc oxide nanostructures

      K Sreenivas Sanjeev Kumar Jaya Choudhary Vinay Gupta

      More Details Abstract Fulltext PDF

      Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2μm) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 μm length was observed after a postdeposition annealing of the prepared structure at 300–400° C. An array of highlyc-axis oriented ZnO columns (70–300 nm in dia. and up to 10 μm long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol

    • Fluorescent silver nanoparticles via exploding wire technique

      Alqudami Abdullah S Annapoorni

      More Details Abstract Fulltext PDF

      Aqueous solution containing spherical silver nanoparticles of 20–80 nm size have been generated using a newly developed novel electro-exploding wire (EEW) technique where thin silver wires have been exploded in double distilled water. Structural properties of the resulted nanoparticles have been studied by means of X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The absorption spectrum of the aqueous solution of silver nanoparticles showed the appearance of a broad surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. The theoretically generated SPR peak seems to be in good agreement with the experimental one. Strong green fluorescence emission was observed from the water-suspended silver nanoparticles excited with light of wavelengths 340, 360 and 390 nm. The fluorescence of silver nanoparticles could be due to the excitation of the surface plasmon coherent electronic motion with the small size effect and the surface effect considerations

    • Nanoparticulate platinum films on gold using dendrimer-based wet chemical method

      S Raghu Sheela Berchmans K L N Phani V Yegnaraman

      More Details Abstract Fulltext PDF

      There is a growing interest in devising wet chemical alternatives for physical deposition methods for applications involving thin films, e.g., catalysis. Deposition of platinum on thin gold films is often a problem leading to incomplete coverage and improper adhesion to solid surfaces. Gold substrates often need pre-activation for achieving complete coverage. We demonstrate here that dendrimers with proper functionalities and size work as well-defined nucleating agents and adhesion promoters. This feature is demonstrated using an amine-terminated dendrimer of generation 4.0. This approach allows one to obtain adherent nanoparticulate films of platinum on gold. Unlike other nucleating agents and adhesion promoting compounds, dendrimers have a well-defined ordered structure in terms of their space filling ability.

      The stability of the films obtained with adsorbed dendrimers is demonstrated using the electrocatalytic reactions of fuels like methanol. The films formed without dendrimers cannot sustain the electro-oxidation currents due to the instability of the films while the films formed with dendrimers can sustain currents for longer duration and for several cycles. The dendrimer-derived Pt films exhibit higher catalytic activity compared to other methods

    • On amorphization and nanocomposite formation in Al-Ni-Ti system by mechanical alloying

      N Das G K Dey B S Murty S K Pabi

      More Details Abstract Fulltext PDF

      Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al-Ni-Ti system was calculated using the extended Miedema’s semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (−ΔHmix) and amorphization (−ΔHamor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative ΔHmix (−0.4 kJ/mol) and ΔHamor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al-TM-TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative ΔHmix and Hamor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative ΔHmix and ΔHamor are not so reliable for predicting the amorphization in the present system by MA

    • Ferromagnetic resonance investigation of nanocrystalline FeCuNbSiB

      G A Basheed S N Kaul

      More Details Abstract Fulltext PDF

      An elaborate line-shape analysis of the ferromagnetic resonance (FMR) spectra taken in the temperature range 100 K to 350 K on amorphous FeCuNbSiB alloys before and after nanocrystallizing them reveals that in the nanocrystalline state, (i) spin wave stiffness (D) is enhanced while the saturation magnetization,MS, is reduced, (ii) both the ‘in-plane’ anisotropy field,HK, as well as the FMR line-width scale with MS, (iii) the single-ion anisotropy of spin-orbit plus crystal field origin dominates over the twoion anisotropy of dipolar origin and (iv) multi-magnon scattering contributions to FMR line-width become important in some cases

    • Structural and magnetic phase formation in nanophase brass—iron electron compounds

      A K Mishra C Bansal

      More Details Abstract Fulltext PDF

      Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we studied the phase formation in nanophase (Cu0.65Zn0.35)1−xFex alloys in the concentration range 0.1 ≤x ≤0.7 to see the effect of altering the electron concentration. The evolution of bcc phase from the fcc phase as a function of Fe concentration was investigated by Mössbauer spectroscopy and X-ray diffraction. The grain size, lattice parameters, and average hyperfine magnetic field distributions were estimated for the nanophase alloys. The fcc phase was observed to persist up to 40 atomic per cent Fe substitutions, a mixed (fcc + bcc) phase region up to 70 atomic per cent Fe and bcc phase beyond 70 atomic per cent Fe. The magnetic state of the alloys changed from nonmagnetic forx ≤0.3 to magnetically ordered state at room temperature forx ≤0.33, which lies in the fcc phase region. The fcc phase alloys of Fe with non-magnetic metals have very low magnetic transition temperatures. However, in this system the room temperature state is unusually magnetic

    • Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica

      A Bhaumik S Samanta N K Mal

      More Details Abstract Fulltext PDF

      Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material throughin-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV-visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3)n, within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore

    • A micro-convection model for thermal conductivity of nanofluids

      Hrishikesh E Patel T Sundararajan T Pradeep A Dasgupta N Dasgupta Sarit K Das

      More Details Abstract Fulltext PDF

      Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of modeling thermal conductivity of nanofluids has been explored which is found to agree excellently with a wide range of experimental data obtained by the present authors as well as the data published in literature

    • Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications

      S Philip Anthony Shatabdi Porel D Narayana Rao T P Radhakrishnan

      More Details Abstract Fulltext PDF

      Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate. Optical second harmonic generation from these films is investigated. A simple protocol is developed for thein-situ fabrication of highly monodisperse silver nanoparticles in a polymer film matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated

    • Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber

      S Ramasamy D J Smith P Thangadurai K Ravichandran T Prakash K PAdmaprasad V Sabarinathan

      More Details Abstract Fulltext PDF

      The ultra high vacuum chamber was developed in the Department of Nuclear Physics, University of Madras with the funding from DST, India. This UHV chamber is used to prepare nanocrystalline materials by inert gas condensation technique (IGCT). Nanocrystalline materials such as PbF2, Mn2+-doped PbF2, Sn-doped In2O3 (ITO), ZnO, Al2O3, Ag2O, CdO, CuO, ZnSe:ZnO etc., were prepared by this technique and characterized. Results of some of these materials will be presented in this paper. In solid-state207Pb NMR on PbF2 a separate signal due to the presence of grain boundary has been observed. The structural phase transition pressure during the phase transformation from the cubic phase to orthorhombic phase under high pressure shows an increase with the decrease in grain size. Presence of electronic centres in nanocrystalline PbF2 is observed from Raman studies and the same has been confirmed by photoluminescence studies. Al2O3 was prepared and56Fe ions were implanted. After implantation segregation of56Fe ions was examined by SEM. The oxidation properties of ITO were studied by HRTEM. As against the expectation of oxide coating on individual nanograins of In-Sn alloy, ITO nanograins grew into faceted nanograins on heat treatment in air and O2 atmosphere. The growth of ITO under O2 atmosphere showed pentagon symmetry. The PMN was initially prepared by solid-state reaction. Further, this PMN relaxor material will be used to convert into nanocrystalline PMN by IGCT with sputtering and will be studied

    • Magnetic properties of nanostructured spinel ferrites and nanocomposite Nd2Fe114B/α-Fe permanent magnets

      A Narayanasamy

      More Details Abstract Fulltext PDF

      This paper presents some of the important magnetic properties of the nanostructured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and Mn0.67Zn0.33Fe2O4 and also that of the nanocomposite Nd2Fe14B/α-Fe permanent magnetic material. The increase in the magnetic transition temperature of Ni-Zn ferrite from 538 K in the bulk state to 592 K when the grain size is reduced to 16 nm is correlated to the enhancement in the AB superexchange interaction strength because of an increase in the magnetic ion concentration in the A-site on milling, as shown by the EXAFS and in-field Mössbauer studies. The particle size has been tailor-made by varying the concentration of the oxidant in the case of Mn-Zn ferrite. The critical particle size for the superparamagnetic limit has been found to be 25 nm with an effective magnetic anisotropy constant of 7.78 kJ m−3 which is about an order of magnitude higher than that of the bulk ferrite. The exchange coupling is found to be strengthened in the nanocomposite magnet Nd2Fe14B/α-Fe, when the grain boundary anisotropy is removed by thermal annealing and thus facilitating the enhancement of the energy product

    • Understanding the influence of nanoenvironment on luminescence of rare-earth ions

      Pushpal Ghosh Amitava Patra

      More Details Abstract Fulltext PDF

      This paper presents an overview of the recent results on upconversion and photoluminescence of rare-earth ions in nanoenvironments. The role of the rare-earth ion concentration, crystal size and crystal phase on the up and downconversion emission of rare-earth ions in oxide nanocrystals and their underlying mechanisms are discussed. It is also found that the luminescence lifetime of the excited state rare-earth ions is sensitive to the particle crystalline phase and size. The analysis suggests that the modifications of radiative and nonradiative relaxation mechanisms are due to local symmetry structure of the host lattice and crystal size respectively

    • Interfacial properties of hybrid nanomaterials

      Binil Itty Ipe K Yoosaf K George Thomas

      More Details Abstract Fulltext PDF

      A brief summary of our ongoing efforts to understand the surface properties of nanoparticles using fluorophores, namely pyrene alkanethiols, is presented. Excited state interactions were investigated by varying the length of the spacer group and the concentration of fluorophore. The flexible long alkyl chain tethering pyrene inAu-P2/Au-P3 allows free interaction between fluorophores resulting in excimer formation whereas the intermolecular interactions are limited in theAu-P 1 system due to the restriction imposed by the curvature of spherical gold nanoparticle. A gradual increase in the peak intensity ratio of III/I band of the normal fluorescence of pyrene was observed indicating that the surface of nanoparticle is more polar than the bulk solvent (toluene)

    • Synthesis, characterization and applications of nanostructural/nanodimensional metal oxides

      B Nagappa G T Chandrappa Jacques Livage

      More Details Abstract Fulltext PDF

      Molybdenum oxide nanorods (MOx-NR) and vanadium oxide nanotubes (VOx-NT) have been prepared using MoO3 and V2O5 powders as precursors and hexadecylamine as surfactant via hydrothermal route. Porous nanocrystalline MgO powder has been prepared by a simple and instantaneous solution combustion process using corresponding magnesium nitrate as oxidizer and glycine as fuel. The compounds are characterized by XRD, TG-DTA, SEM, TEM, surface area and porosity measurements. Because of the porous nature having large surface area (107 m2/g) with nanodimension (12-23 nm), MgO powder has been successfully employed as defluoridizing agent for the removal of fluoride (75%) in ground water

    • Arjunolic acid: A promising new building block for nanochemistry

      Braja G Bag Gopal C Maity Subhash R Pramanik

      More Details Abstract Fulltext PDF

      Arjunolic acid, the major extractable constituent of the heavy wood ofTerminalia Arjuna, has the potential to be used as a rigid and functional molecular framework for the construction of nanosized supramolecular architectures and nanomaterials. The nanosized triterpenoid, arjunolic acid, showed efficient gelation of various organic solvents at low concentrations. The low molecular mass gelator molecules self-assembled in the solvents to form fibers of nanometer diameters. The movement of the solvent molecules was hindered inside the fibrous network leading to the formation of a gel

    • Metal nanoparticle-doped coloured films on glass and polycarbonate substrates

      S K Medda M Mitra S De S Pal G De

      More Details Abstract Fulltext PDF

      In a program on the development of metal (e.g. Au, Ag, Cu and their alloy) nanoparticles in sol-gel derived films, attempts were made to synthesize different coloured coatings on glasses and plastics. The absorption position of surface plasmon resonance (SPR) band arising from the embedded metal nanoparticles was tailored by controlling the refractive index of the matrix for the development of different colours. Thus different coloured (pink to blue) coatings on ordinary sheet glasses were prepared by generating Au nanoparticles in mixed SiO2-TiO2 matrices having refractive index values ranging from about 1.41 to 1.93. In another development,in situ generation of Ag nanoparticles in the inorganic-organic hybrid host leads to the formation of different abrasion resistant coloured coatings (yellow to pink) on polycarbonate substrates after curing. As expected, the SPR peak of Ag or Au is gradually red-shifted due to the increase of refractive index of the coating matrices causing a systematic change of colour

    • Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes

      Ashok K Ganguli Tokeer Ahmad Padam R Arya Pika Jha

      More Details Abstract Fulltext PDF

      Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides

    • Structural, electrical and gas-sensing properties of In2O3 : Ag composite nanoparticle layers

      B R Mehta V N Singh

      More Details Abstract Fulltext PDF

      The central objective of this study is to investigate (i) size-dependent properties of In2O3 nanoparticles and (ii) the role of metal additives in enhancing the gas sensing response. For this purpose, In2O3 : Ag composite nanoparticle layers having welldefined individual nanoparticle size and composition have been grown by a two step synthesis method. Thermogravimetric analysis, X-ray diffraction and transmission electron microscopy have been used to study the effect of post-synthesis heat treatment on the size and structure of the nanoparticles. A first-time unambiguous observation of sizedependent lowering of transformation temperature has been explained in terms of lower cohesive energy of surface atoms and increase in surface-to-volume ratio with decrease in nanoparticle size. The gas sensing studies of In2O3 as well as the In2O3 : Ag composite nanoparticle layers have been studied as a function of size and composition. In2O3: Ag composite nanoparticle layers with 15% silver show a sensitivity of 436 and response time of 6 s for 1000 ppm of ethanol in air. Ag additives form a p-type Ag2O, which interact with n-type In2O3 to produce an electron-deficient space-charge layer. In the presence of ethanol, interfacial Ag2O reduces to Ag, creating an accumulation layer in In2O3 resulting in increased sensitivity

    • Electroless Ni—P—ferrite composite coatings for microwave applications

      Ramesh Chandra Agarwala

      More Details Abstract Fulltext PDF

      Electroless, EL coating technique is one of the elegant ways of coating by controlling the temperature and pH of the coating bath in which there is no usage of electric current. It is estimated that the market for this chemistry will increase at a rate of about 15% per year. Use of microwave energy for synthesis of material with novel microstructures is an exciting new field in material science with enormous application.

      In this investigation, nanograined BaZn2−yCoyFe16O27y = 0.0, 0.4, 0.8, 1.2, 1.6 and 2.0) powders have been synthesized by citrate precursor method followed by heat treatment at various specified temperatures like 650, 750 and 850° C for 3 h in the furnace. In addition heat treatments are also carried out in the microwave oven of the power rating of 760 W. The powders thus produced have been characterized by SEM, EPMA, VSM, XRD and thermal analysis techniques.

      As a forward step towards EL nano-composite coatings, Ni-P-X (X = BaZn2−y CoyFe16O27) coatings with thickness less than ∼0.1 mm thick has been produced. Such coating exhibits absorption of microwave in the range of 12–18 GHz up to about 20 db depending upon the volume fraction of the ferrite particles embedded in the Ni-P matrix

    • Covalent immobilization of myosin forin-vitro motility of actin

      Ellis Bagga Sunita Kumari Rajesh Kumar Rakesh Kumar R P Bajpai Lalit M Bharadwaj

      More Details Abstract Fulltext PDF

      The present study reports the covalent immobilization of myosin on glass surface andin-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. Thein-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4–1.0 mg/ml) and was found in the range of 0.40–3.25 μm/s. The motility of actinmyosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications

    • Preparation of nanoparticle size LiBiO2 by combustion method and its electrochemical studies for lithium secondary cells

      R Sathiyamoorthi A Subramania R Gangadharan T Vasudevan

      More Details Abstract Fulltext PDF

      A simple combustion method has been tried for the preparation of nanoparticle-sized LiBiO2 powder with urea as the igniter and glycerol as the binding material. Nitrates of Li+ and Bi3+ were mixed together to form a uniform mixture. Required quantities of urea and glycerol were added to this mixture to form a paste. This paste was carefully heated to 100° C initially and finally heated to 460° C for 5 h. The product obtained was subjected to TG/DTA and XRD analysis. The particle size of the cathode material was roughly calculated from the X-ray data using Scherer equation. However, SEM and EDAX analysis were carried out in detail to confirm the particle size and the composition of LiBiO2 respectively. A 2016 coin type button cell was assembled with LiBiO2 as cathode and graphite as anode containing polypropylene separator and a solution of 1 M LiClO4 dissolved in 1:1 (EC+DEC) mixture as the electrolyte. Charge/discharge studies were conducted to establish viability of the reversible cell

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.