• Volume 63, Issue 2

      August 2004,   pages  182-479

    • Foreword

      V C Sahni

      More Details Abstract Fulltext PDF
    • Temperature effects on the structure of liquid D-methanol through neutron diffraction

      A Sahoo S Sarkar P S R Krishna R N Joarder

      More Details Abstract Fulltext PDF

      The study of changes in the structure (H-bonded) of liquid alcohols at elevated temperatures is rare probably due to low flash points of these liquids. An indigenously devised special quartz cell is now used to carry out the structural studies of these liquids at elevated temperatures through neutron diffraction. Here, the liquid consists of deuterated methanol and neutron data was collected on the high-Q diffractometer at Dhruva, BARC. The corrected data at elevated temperatures (BP (boiling point) and double the BP) show that there is a large change in the H-bonded structure of this liquid. The pre-peak or hump, known to be signature of H-bonded clusters appears to be present at all the three temperatures studied. In the low-Q (scattering vector) data Ornstein Zernike (OZ) behaviour is also observed. It is, however, seen that the intramolecular structure does not change very much at higher temperatures. A detailed model analysis is in progress and would be reported later.

    • Structural study and electrical properties of Zr-doped Nd2Sn2O7 pyrochlore compounds

      Y D Kolekar S B Kulkarni Keka Chakraborty A Das S K Paranjpe P B Joshi

      More Details Abstract Fulltext PDF

      Nd2Sn2O7 pyrochlores with the substitution of Zr4+ were prepared by conventional ceramic double sintering technique. The single-phase formation was confirmed by X-ray diffraction and neutron diffraction techniques. Relative intensity calculations for X-ray diffraction analysis were performed for oxygen positional parametersx = 0.331 and 0.375, while Rietveld refinements were employed for neutron diffraction data. The neutron diffraction study revealed that there are only two anion sites with 48f and 8b positions. This indicates that the 8a site, i.e. O(3) sublattice, is completely vacant and the structure is a perfect cubic pyrochlore with space group Fd3m (Oh7). From the conductivity measurements, it is observed that the electronic conductivity dominates from room temperature up to about 525 K and forT > 525 K, the oxygen ion conduction dominates the charge transport in these compositions. Complex impedance spectroscopy indicates the existence of grain and grain boundary as two separate elements.

    • Magnetization and neutron diffraction studies on FeCrP

      Sudhish Kumar Anjali Krishnamurthy Bipin K Srivastava A Das S K Paranjpe

      More Details Abstract Fulltext PDF

      Crystal structure and magnetic behaviour of FeCrP have been investigated using magnetization and neutron diffraction measurements. FeCrP crystallizes in orthorhombic FeZrP type structure (Pnma space group,Z = 4) in which Cr atoms occupy the pyramidal site and Fe atoms occupy the tetrahedral site with total preference. Structural parameters including positional parameters have been refined. The refined values of positional parameters for Fe and Cr are quite different from those in FeZrP. The nature of magnetization-temperature curve is suggestive of antiferromagnetic nature withTN = 280 (±10) K. Preliminary analysis of neutron diffraction pattern at 13 K is indicative of a rather complicated magnetic structure.

    • Magnetic behaviour of (Fe0.85Cr0.15)2As

      S K Jain A Das Bipin K Srivastava Anjali Krishnamurthy S K Paranjpe

      More Details Abstract Fulltext PDF

      Magnetization and neutron diffraction measurements have been made on the title pseudo-binary of tetragonal anti-ferromagnets Fe2 As and Cr2 As. In this system antiferromagnetic (AFM) ordering appears below 310 K. The moments are confined in theab plane but unlike in the end members they are tilted off thea-axis. In addition to the AFM structure a weak ferromagnetic behaviour shows up below∼80 K with a rather low moment of ∼0.07 μB per formula unit at 5 K and under a field of 3 T.

    • Neutron diffraction studies on La2−xDyxCa2xBa2Cu4+2xOz superconductors

      S Rayaprol Rohini Parmar D G Kuberkar Keka R Chakraborty P S R Krishna M Ramanadham

      More Details Abstract Fulltext PDF

      Structural studies on Dy-substituted La-2125 type superconductors have been carried out by neutron diffraction experiments at room temperature using a monochromatic neutron beam of wavelength (λ) = 1.249 Å. A series of samples with La2-xDyxCa2xBa2Cu4+2xOz stoichiometric composition, forx = 0.1–0.5, have been studied for their structural properties. A tetragonal Y-123 unit cell was taken as the starting model for the Rietveld analysis. All the samples fit into the starting model, with no structural transition taking place with increasing dopant concentration. The results of Rietveld analysis and structural properties will be discussed in detail.

    • Structure and magnetic properties of colossal magnetoresistance compound Tb0.5Sr0.5CoO3

      J S Srikiran A B Shinde P S R Krishna

      More Details Abstract Fulltext PDF

      The structure and the magnetic properties of the doped rare earth cobaltite systems are of recent interest owing to the CMR phenomenon that occur in them. In this paper, we investigate the structure and magnetic properties of Tb0.5Sr0.5CoO3 solid solution, for the first time, using neutron powder diffraction technique. The sample Tb0.5Sr0.5CoO3 is found to crystallize in orthorhombic (Pbnm) symmetry. The unit cell volume and Co—O bond length reduce with temperature. The calculatedeg bandwidth obtained from structural parameters turns out to be 0.989 eV. Low temperature neutron diffraction profiles exhibit a magnetic contribution to the fundamental Bragg peaks indicating a ferromagnetic ordering belowTc. The results are compared with Co—O—Co bond angles and Co—O bond length of La0.5Sr0.5CoO3, highlighting the ionic size effects on substitution of Tb ion for La in the compound.

    • Low temperature magnetic structure of MnSe

      J B C Efrem D'Sa P A Bhobe K R Priolkar A Das P S R Krishna P R Sarode R B Prabhu

      More Details Abstract Fulltext PDF

      In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport properties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase appears below 266 K and is antiferromagnetically ordered at all temperatures while the NaCl phase orders antiferromagnetically at 130 K.

    • HgO-added YBa2Cu3O7−δ superconductors

      Manglesh Dixit Shovit Bhattacharya Rajneesh Mohan Kiran Singh P S R Krishna Vilas Shelke N K Gaur R K Singh

      More Details Abstract Fulltext PDF

      The HgO-added YBa2Cu3O7−δ (YBCO) superconductor has been studied for its structural and superconducting properties. Polycrystalline YBCO samples were synthesized through solid-state reaction method by adding HgO in different concentrations without using oxygen annealing. All the samples showed a sharp superconducting transition temperature around 90 K. The X-ray diffraction patterns of all the samples revealed monophasic Y-123 nature. The structural studies were carried out by neutron scattering and Rietveld analysis. The neutron scattering revealed that Hg is not incorporated in the Y-123 system and has shown optimum oxygen concentration. The significant role played by the HgO is to provide oxygen ambient through its decomposition, thus changing the oxygen balance in favour of high Cu-valence state.

    • Magnetic structure of molecular magnet Fe[Fe(CN)6]·4H2O

      Amit Kumar S M Yusuf

      More Details Abstract Fulltext PDF

      We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase transition at 22.6 K. Rietveld analysis of neutron diffraction pattern at 60 K (in its paramagnetic phase) revealed a face centred cubic structure with space group Fm3m. The structure contains three-dimensional network of straight Fe3+-C≡N-Fe3+ chains along the edges of the unit cell cube. Fe3+ ions occupy 4a (0, 0, 0) and 4b (1/2, 1/2, 1/2) positions. Fe3+(0, 0, 0) is surrounded octahedrally by six nitrogen atoms and Fe3+ (1/2, 1/2, 1/2) is surrounded octahedrally by six carbon atoms. Magnetic Rietveld refinement of neutron diffraction data at 11 K shows a ferromagnetic coupling between the two inequivalent Fe3+ sites. Refinement yielded an ordered moment of 4.4(6) and 0.8(6) μB per Fe ion located at (0, 0, 0) and (1/2, 1/2, 1/2), respectively. Ordered moments are found to align along the face diagonal. The observed net moment from low temperature neutron diffraction study is consistent with DC magnetization results.

    • Neutron scattering study of combustion-synthesized Ce1−xCuxO2−x

      Keka R Chakraborty P S R Krishna M S Hegde

      More Details Abstract Fulltext PDF

      Powder neutron diffraction and Hi-Q neutron diffraction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cudoped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its first coordination shell. These deductions from the data analysis fit well with the mechanism of catalysis we propose.

    • Low-temperature neutron diffraction study of La0.95Nd0.05CrO3

      Keka R Chakraborty S M Yusuf P S R Krishna M Ramanadham A K Tyagi

      More Details Abstract Fulltext PDF

      We have synthesized polycrystalline La0.95Nd0.05CrO3 sample by doping the La-site of LaCrO3 with Nd and its magnetic properties have been studied using DC magnetization and neutron diffraction techniques. DC magnetization study shows a paramagnetic to a weak ferromagnetic-like transition at ∼295 K followed by signatures of a spin reorientation phenomenon at 233 and 166 K and, finally a transition to an antiferromagnetic-like phase at ∼21 K. Low-temperature neutron diffraction measurements confirm a weak ferrimagnetic ordering of Cr3+ moments at all temperatures below 295 K.

    • Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction study

      P U Sastry R Chitra R R Choudhury M Ramanadham

      More Details Abstract Fulltext PDF

      The crystal structure of ZTS has been determined by neutron diffraction with a finalR-value of 0.026. Using the structural parameters, the contributions from the structural groups to the linear optical susceptibility and linear electro-optic coefficients have been evaluated. Results showed a significant contribution from the hydrogen bonds in the structure.

    • Hydrogen bonding in oxalic acid and its complexes: A database study of neutron structures

      R Chitra Amit Das R R Choudhury M Ramanadham R Chidambaram

      More Details Abstract Fulltext PDF

      The basic result of carboxylic group that the oxygen atom of the -OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N—H… O hydrogen bond. The parameters of this hydrogen bond, respectively in these structures are: hydrogen acceptor distance 2.110 Å and 2.127 Å and the bending angle at hydrogen, 165.6° and 165.8°. The bond strength around the hydroxyl oxygen is close to 1.91 valence units, indicating that it has hardly any strength left to form hydrogen bonds. These two structures being highly planar, force the formation of this hydrogen bond. As oxalic acid is the common moiety, the structures of the two polymorphs, α-oxalic acid and β-oxalic acid, also were looked into in terms of hydrogen bonding and packing.

    • Small-angle neutron and dynamic light scattering study of gelatin coacervates

      B Mohanty V K Aswal P S Goyal H B Bohidar

      More Details Abstract Fulltext PDF

      The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of ∼50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of ∼400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1]. Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, ξ = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60°C (ξ = 50 Å, ζ = 113 Å) and 5% (w/v) gel at 28°C (ξ = 47 Å, ζ = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.

    • Sphere-to-rod transition of triblock copolymer micelles at room temperature

      R Ganguly V K Aswal P A Hassan I K Gopalakrishnan J V Yakhmi

      More Details Abstract Fulltext PDF

      A room temperature sphere-to-rod transition of the polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymer, (PEO)20(PPO)70 (PEO)20 micelles have been observed in aqueous medium under the influence of ethanol and sodium chloride. Addition of 5–10% ethanol induces a high temperature sphere-to-rod transition of the micelles, which is brought to room temperature upon addition of NaCl. The inference about the change in the shape of the micelles has been drawn from small-angle neutron scattering (SANS) and viscosity studies.

    • Temperature dependent small-angle neutron scattering of CTABr—magnetic fluid emulsion

      V K Aswal J V Joshi P S Goyal Rajesh Patel R V Upadhyay R V Mehta

      More Details Abstract Fulltext PDF

      Small-angle neutron scattering studies have been carried out to check the structural integrity of citryltrimethylammonium bromide (CTABr) micelles in a magnetic fluid for different magnetic fluid concentrations at two different temperatures 303 and 333 K. It is found that the CTABr micelles grow with increasing magnetic fluid concentration and there is a decrease in the micellar size with increase in temperature.

    • Characterization of nanoparticles of lidocaine in w/o micro emulsions using small-angle neutron scattering and dynamic light scattering

      A Shukla M A Kiselev A Hoell R H H Neubert

      More Details Abstract Fulltext PDF

      Microemulsions (MEs) are of special interest because a variety of reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ∼15 nm and ∼4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

    • Small-angle neutron scattering studies of nonionic surfactant: Effect of sugars

      K Shivaji Sharma J V Joshi V K Aswal P S Goyal A K Rakshit

      More Details Abstract Fulltext PDF

      Micellar solution of nonionic surfactantn-dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60° C) both in the presence and absence of sugars. The structural parameters like micelle shape and size, aggregation number and micellar density have been determined. It is found that the micellar structure significantly depends on the temperature and concentration of sugars. The micelles are found to be prolate ellipsoids at 30° C and the axial ratio of the micelle increases with the increase in temperature. The presence of lower concentration of sugar reduces the size of micelles and it grows at higher concentration of sugar. The structure of micelles is almost independent of the different types of sugars used.

    • Small-angle neutron scattering study of aggregate structures of multi-headed pyridinium surfactants in aqueous solution

      J Haldar V K Aswal P S Goyal S Bhattacharya

      More Details Abstract Fulltext PDF

      The aggregate structures of a set of novel single-chain surfactants bearing one, two and three pyridinium headgroups have been studied using small-angle neutron scattering (SANS). It is found that the nature of aggregate structures of these cationic surfactants depend on the number of headgroups present in the surfactants. The single-headed pyridinium surfactant forms the lamellar structure, whereas surfactants with double and triple headgroups form micelles in water. The aggregates shrink in size with increase in the number of headgroups in the surfactants. The aggregation number (N) continually decreases and the fractional charge (α) increases with more number of headgroups on the surfactants. The semimajor axis (a) and semiminor axis (b = c) of the micelle also decrease with the increase in the number of headgroups in the surfactants. This indicates that hydrocarbon chains in such micelles prepared from multiheaded surfactants adopt bent conformation and no longer stay in extended conformation.

    • Effect of porosity and pore morphology on the low-frequency dielectric response in sintered ZrO2—8 mol% Y2O3 ceramic compact

      D Sen T Mahata A K Patra S Mazumder B P Sharma

      More Details Abstract Fulltext PDF

      Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01–100 kHz, in sintered ZrO2—8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, specific surface area etc. It has been observed that the real and the imaginary parts of the complex dielectric permittivity, for the specimens, depend not only on the porosity but also on the pore size distribution and pore morphology significantly. Unlike normal Debye relaxation process, where the loss tangent vis-à-vis the imaginary part of the dielectric constant shows a pronounced peak, in the present case the same increases at lower frequency region and an anomalous non-Debye type relaxation process manifests.

    • Small-angle neutron scattering studies on water soluble complexes of poly(ethylene glycol)-based cationic random copolymer and SDS

      C K Nisha Sunkara V Manorama Souvik Maiti K N Jayachandran V K Aswald P S Goyal

      More Details Abstract Fulltext PDF

      The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCPSDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0.6 ± 0.05, respectively.

    • Carbide precipitates in solution-quenched PH13-8 Mo stainless steel: A small-angle neutron scattering investigation

      D Sen A K Patra S Mazumder J Mittra G K Dey P K De

      More Details Abstract Fulltext PDF

      This paper deals with the small-angle neutron scattering (SANS) investigation on solution-quenched PH13-8 Mo stainless steel. From the nature of the variation of the functionality of the profiles for varying specimen thickness and also from the transmission electron microscopy (TEM), it has been established that the small-angle scattering signal predominantly originates from the block-like metallic carbide precipitates in the specimen. The contribution due to double Bragg reflection is not significant in the present case. The single scattering profile has been extracted from the experimental profiles corresponding to different values of specimen thickness. In order to avoid complexity and non-uniqueness of the multi-parameter minimization for randomly oriented polydisperse block-like precipitate model, the data have been analyzed assuming randomly oriented polydisperse cylindrical particle model with a locked aspect ratio.

    • SANS investigation on evolution of pore morphology for varying sintering time in porous ceria

      A K Patra S Ramanathan D Sen S Mazumder

      More Details Abstract Fulltext PDF

      Precipitates of ceria were synthesized by homogeneous precipitation method using cerium nitrate and hexamethylenetetramine at 80°C. The precipitates were ground to fine particles of average size ∼0.7 μm. Circular disks with 10 mm diameter, 2 and 3 mm thickness were prepared from the green compacts by sintering at 1300° C for three different sintering times. Evolution of the pore structures in these specimens with sintering time was investigated by small-angle neutron scattering (SANS). The results show that the peak of the pore size distribution shifts towards the larger size with increasing sintering time although the extent of porosity decreases. This indicates that finer pores are eliminated from the system at a faster rate than the coarser ones as sintering proceeds and some of the finer pores coalesce to form bigger ones.

    • Counterion condensation in ionic micelles as studied by a combined use of SANS and SAXS

      V K Aswal P S Goyal H Amenitsch S Bernstorff

      More Details Abstract Fulltext PDF

      We report a combined use of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) to the study of counterion condensation in ionic micelles. Small-angle neutron and X-ray scattering measurements have been carried out on two surfactants cetyltrimethylammonium bromide (CTABr) and cetyltrimethylammonium chloride (CTACl), which are similar but having different counterions. SANS measurements show that CTABr surfactant forms much larger micelles than CTACl. This is explained in terms of higher condensation of Br counterions than Cl counterions. SAXS data on these systems suggest that the Br counterions are condensed around the micelles over smaller thickness than those of Cl counterions.

    • Contrast variation SANS experiments to the study of detergent-induced micellization of block copolymers

      V K Aswal J Kohlbrecher

      More Details Abstract Fulltext PDF

      PEO—PPO—PEO triblock copolymer P85 [(EO)26(PO)39(EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering measurements show that triblock copolymer forms mixed micelles with detergent and the mixing of two components in the mixed micelles is uniform.

    • Magnetic behaviour of nano-particles of Fe2.8Zn0.2O4

      Subhash Chander Seema Lakhanpal Anjali Krishnamurthy Bipin K Srivastava V K Aswal

      More Details Abstract Fulltext PDF

      Magnetization measurements are reported on a nano-particle sample of Znsubstituted spinel ferrite Fe2.8Zn0.2O4 in the temperature range 20–300 K. Analysis of small-angle neutron scattering data shows the sample to have a log-normal particle size distribution of median diameter 64.4 Å and standard deviation 0.38. Magnetization evolves over a long period of timet going nearly linearly with logt. Magnetic anisotropy, estimated by fitting M-logt curve, shows many fold increase over that of bulk particle sample. Major enhancement owes to disordered moments in surface layer. In the nano-particle state as well increasing amount of Zn causes anisotropy to decrease.

    • Effect of substitution on aniline in inducing growth of anionic micelles

      Gunjan Garg V K Aswal S K Kulshreshtha P A Hassan

      More Details Abstract Fulltext PDF

      Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride,o-toluidine hydrochloride andm-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions.

    • Small-angle neutron scattering studies of sodium butyl benzene sulfonate aggregates in aqueous solution

      O R Pal V G Gaikar J V Joshi P S Goyal V K Aswal

      More Details Abstract Fulltext PDF

      The aggregation behaviour of a hydrotrope, sodiumn-butyl benzene sulfonate (Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope seems to form self-assemblies with aggregation number of 36–40 with a substantial charge on the aggregate. This aggregation number is weakly affected by the hydrotrope concentration.

    • Structural changes during the unfolding of Bovine serum albumin in the presence of urea: A small-angle neutron scattering study

      Amit Das R Chitra R R Choudhury M Ramanadham

      More Details Abstract Fulltext PDF

      The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA with different concentrations of urea in D2O at pH 7.2 ± 0.2 were measured at room temperature. The scattering profile was fitted to a prolate ellipsoidal shape (a, b, b) of the protein witha = 52.2 Å andb = 24.2 Å. The change in the dimensions of the protein as it unfolds was found to be anisotropic. The radius of gyration of the compact form of the protein in solution decreased as the urea concentration was increased.

    • A polarised SUSANS facility to study magnetic systems

      Apoorva G Wagh Veer Chand Rakhecha Markus Strobl Wolfgang Treimer

      More Details Abstract Fulltext PDF

      Using a right-angled magnetic air prism, we have achieved a separation of ∼10 arcsec between ∼2 arcsec wide up and down-spin peaks of 5.4 Å neutrons. The polarised neutron option has thus been introduced into the SUSANS instrument. Strongly spindependent SUSANS spectra have been observed over ±1.3 × 10−4 Å−1 range for several magnetic alloy samples. Spatial pair-distribution functions for the up and down-spins as well as the nuclear and magnetic scattering length density distributions in the micrometer domain, have been deduced from these spectra.

    • On measuring the neutron coherent scattering length with ultrahigh precision

      Sohrab Abbas Apoorva G Wagh

      More Details Abstract Fulltext PDF

      We propose an order of magnitude improvement in the present five parts in 105 precision of a nondispersive interferometric measurement of the neutron coherent scattering lengthbc. For this purpose we make a judicious selection of the Bragg angle for the interferometer and the sample thickness. The precision is further improved by an optimal choice of the Bragg reflection (and a consequent neutron wavelength). By performing the experiment in vacuum, errors arising from possible variations in the pressure, composition or humidity of the ambient air can be eliminated. On attaining such precision, we ought to account for the neutron beam refraction at the sample-ambient interfaces, to infer the correctbc from the observed phase. The formula for the phase used hitherto is approximate and would significantly overestimatebc. The refractive index for neutrons can thus be determined to a phenomenal precision of a few parts in 1012.

    • Geometric formula for prism deflection

      Apoorva G Wagh Veer Chand Rakhecha

      More Details Abstract Fulltext PDF

      While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple ‘geometric’ formula. For a prism of refractive indexn close to unity, the deflection simply equals the product of the refractive powern − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.

    • Polarized neutron reflectometry at Dhruva reactor

      Surendra Singh Saibal Basu

      More Details Abstract Fulltext PDF

      Polarized neutron reflectometry (PNR) is an ideal non-destructive tool for chemical and magnetic characterization of thin films and multilayers. We have installed a position sensitive detector-based polarized neutron reflectometer at Dhruva reactor, Trombay. In this paper we will discuss the results obtained from this instrument for two multilayer samples. The first sample is a (Ni-Mo alloy)/Ti multilayer sample. We have determined the chemical structure of this multilayer by unpolarized neutron reflectometry (NR). The other sample is a Fe/Ge multilayer sample for which we obtained the chemical structure by NR and magnetic moment per Fe atom by PNR.

    • Inelastic neutron scattering study of lattice dynamics in α-ZnCl2

      A Sen Mala N Rao R Mittal S L Chaplot

      More Details Abstract Fulltext PDF

      Inelastic neutron scattering experiments have been carried out to measure the phonon density of states in polycrystalline α-ZnCl2 at Dhruva, Trombay. Lattice dynamical calculations, based on an interatomic potential model, are accomplished to study phonons associated with this otherwise extremely hygroscopic compound. Our calculated data are found to be well-compatible with the available measured ones.

    • Inelastic neutron scattering in Zr2NiH1.9 and Zr2NiH4.6

      R Mittal S L Chaplot P Raj K Shashikala A Sathyamoorthy

      More Details Abstract Fulltext PDF

      In this paper we report the results obtained from inelastic neutron scattering measurements on Zr2NiH1.9 and Zr2NiH4.6 using triple-axis spectrometer at Dhruva reactor, Trombay. The spectrum up to 35 meV represents largely the lattice modes of Zr and Ni atoms. The vibrational frequencies of hydrogen atoms are expected predominantly at higher energies. The phonon spectra from 35–180 meV were recorded using a Be filter as analyser. In order to analyse the observed neutron spectra, we assume a set of Ein-stein modes due to the hydrogen atoms which are delta functions in energy. These delta functions are broadened by the resolution of the instrument. The vibrational frequencies obtained from the fitting of the observed phonon spectra have been assigned to various tetrahedral sites in both the compounds.

    • Inelastic neutron scattering and lattice dynamics of GaPO4

      R Mittal S L Chaplot A I Kolesnikov C -K Loong O D Jayakumar S K Kulshreshtha

      More Details Abstract Fulltext PDF

      We report here measurements of phonon spectrum and lattice dynamical calculations for GaPO4. The measurements in low-cristobalite phase of GaPO4 are carried out using high-resolution medium-energy chopper spectrometer at ANL, USA in the energy transfer range 0–160 meV. Semiempirical interatomic potential in GaPO4, previously determined using ab-initio calculations have been widely used in studying the phase transitions among various polymorphs. The calculated phonon spectrum using the available potential show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarisability of the oxygen atoms in the framework of the shell model. The lattice dynamical models are also exploited for calculations of various thermodynamic properties of GaPO4.

    • Lattice dynamics of lithium oxide

      Prabhatasree Goel N Choudhury S L Chaplot

      More Details Abstract Fulltext PDF

      Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 K. We have carried out lattice-dynamical calculations of Li2O using a shell model in the quasi-harmonic approximation. The calculated phonon frequencies are in excellent agreement with the reported inelastic neutron scattering data. Thermal expansion, specific heat, elastic constants and equation of state have also been calculated which are in good agreement with the available experimental data.

    • Static and dynamic properties of KCNxCl1−x

      Jyotsna Galgale Nupinder Kaur Preeti Singh Manik Manake N K Gaur R K Singh

      More Details Abstract Fulltext PDF

      An extended three-body force shell model (ETSM) has been applied to investigate the static and dynamic properties of KCNxCl1−x for the compositionx = 0.56 and 1.0 at 300 K. The phonon dispersion curves computed by us are compared with the single crystal neutron diffraction data. The unusual features of these curves are the upward curvature seen in some of the acoustic branches. This is a result ofK-dependent softening of the phonon due to translation-rotation coupling. The transverse acoustic branch is more soft near the zone centre.

    • Phonon dispersion curves of CsCN

      N K Gaur Preeti Singh E G Rini Jyotsna Galgale R K Singh

      More Details Abstract Fulltext PDF

      The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique.

    • Theoretical study of the transverse acoustic phonons of GaSb at high pressure

      S Shinde M Talati Prafulla K Jha S P Sanyal

      More Details Abstract Fulltext PDF

      We have investigated the phonon dispersion curves and one-phonon density of states up to the pressure of 8 GPa using a theoretical model, namely the rigid ion model. The transverse acoustic phonons as a function of pressure have been compared with the recently measured inelastic neutron scattering data which show a strong softening near the zone boundaries. The calculated one-phonon density of states show pronounced shift in the peak positions with the increase in pressure.

    • Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy

      Arun Pratap Kirit N Lad K G Raval

      More Details Abstract Fulltext PDF

      The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born-Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li0.61Na0.39 alloy. Apart from the phonon spectra, the Ashcroft-Langreth structure factors in the alloy are derived in the Percus-Yevick approximation.

    • Excess water dynamics in hydrotalcite: QENS study

      S Mitra A Pramanik D Chakrabarty R Mukhopadhyay

      More Details Abstract Fulltext PDF

      Results of the quasi-elastic neutron scattering (QENS) measurements on the dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random translational jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the change in binding of the water molecules to the host layer.

    • Dynamics of different molecules adsorbed in porous media

      S Mitra V S Kamble A K Tripathi N M Gupta R Mukhopadhyay

      More Details Abstract Fulltext PDF

      We present in this paper a comparative study on the dynamics of benzene, cyclohexane, and methanol molecules, confined in the pores of MCM-41 molecular sieve and HZSM-5 zeolite. The quasi-elastic neutron scattering (QENS) measurements revealed that the physical state of these adsorbed molecules depended not only on the structural characteristics of the host matrix but also on the chemical properties, such as dipole moment, of the guest molecules. Thus, while no motion was observed in the time-scale of 10−10−10−12 s in the case of methanol, the larger size benzene and cyclohexane molecules are found to perform six-fold and three-fold jump rotation, respectively, when adsorbed inside the cages of HZSM-5 at room temperature. At the same time, all the three molecules are found to undergo a translational motion inside the pores of MCM-41 molecular sieves, the value of diffusion constant being the lowest in case of methanol because of its higher polarity. Translationl motion of the guest molecules inside the pores of MCM-41 can be satisfactorily described by Chudley-Eliott fixed jump length diffusion and accordingly the residence time, jump length and diffusion constant are estimated.

    • Acetylene diffusion in Na-Y zeolite

      S Mitra S Sumitra A M Umarji R Mukhopadhyay S Yashonath S L Chaplot

      More Details Abstract Fulltext PDF

      Study of diffusivity of acetylene adsorbed in Na-Y zeolite by quasi-elastic neutron scattering (QENS) measurements at temperatures of 300, 325 and 350 K is reported. A model in which the acetylene molecules undergo random-walk diffusion characterized by a Gaussian distribution of jump lengths inside zeolite cages describes the data consistently. The diffusion constant, residence time between jumps and root mean square jump length are determined.

    • Data acquisition and instrument control system for neutron spectrometers

      S S Naik Ismat Kotwal R M Chandak V G Gaonkar

      More Details Abstract Fulltext PDF

      A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input-output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor.

    • Instrumentation for PSD-based neutron diffractometers at Dhruva reactor

      S S Pande S P Borkar S Prafulla V D Srivastava A Behare P K Mukhopadhyay M D Ghodgaonkar S K Kataria

      More Details Abstract Fulltext PDF

      Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system [1] is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers [2],shaping amplifiers, ratio ADCs (RDC) [3]. The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here.

    • Two-dimensional position sensitive neutron detector

      M Shaikh S S Desai A K Patra

      More Details Abstract Fulltext PDF

      A two-dimensional position sensitive neutron detector has been developed. The detector is a3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar3He + 1.5 bar krypton gas mixture in active chamber and 2 bar4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in theQ range of 0.02-0.25 Å−1.

    • Development of a microstrip-based neutron detector

      S S Desai A M Shaikh V Radhakrishna K Rajanna

      More Details Abstract Fulltext PDF

      A gas-filled microstrip detector for thermal neutrons has been built and successfully tested in our laboratory. The detector has an active area of 20 mm × 15 mm and consists of alternate anodes and cathodes of widths 12 μm and 300 μm respectively. The anode to cathode gap is 150 μm and the pitch is 612 μm. A high resistance, meandering type horizontal strip connects the anodes at one end and aids in position sensing by charge division method. The detector is tested with gas mixtures3He+Kr (1: 2) and3He+CF4 (2:1) at pressure of 3 atmospheres and using a Pu-Be neutron source. The pulse height spectrum shows energy resolution of ∼8% (FWHM) for the 764 keV peak at anode voltage of 525 V for3He+Kr and ∼15% at anode voltage of 800 V for3He+CF4. Gas gains up to 6.3 × 103 and 3.6 × 103 are obtained respectively with these gas mixtures. The overall efficiency of the detector along the sensitive length is tested by exposing the active area to neutrons and recording the position spectrum. The detector shows fairly uniform efficiency (∼45%) over the active length.

    • List of Participants

      More Details Abstract Fulltext PDF
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.