• Volume 59, Issue 6

      December 2002,   pages  885-1098

    • Beam dynamics studies in the driver LINAC pre-stripper section of the RIA facility

      E S Lessner P N Ostroumov

      More Details Abstract Fulltext PDF

      The RIA facility driver LINAC consists of about 400 superconducting (SC) independently phased rf cavities. The LINAC is designed to accelerate simultaneously several charge-state beams to generate as much as 400 kW of uranium beam power. The LINAC beam dynamics is most sensitive to the focusing and accelerating structure parameters of the pre-stripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate two charge states (28 and 29) of uranium beam from an ECR ion source. The pre-stripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the pre-stripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic three-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

    • Heavy-ion LINAC development for the US RIA project

      P N Ostroumov

      More Details Abstract Fulltext PDF

      The Nuclear Science Community in the Unites States has unanimously concluded that developments in both nuclear science and its supporting technologies make building a world-leading Rare-Isotope Accelerator (RIA) facility for production of radioactive beams the top priority. The RIA development effort involves several US Laboratories (ANL, JLAB, LBNL, MSU, ORNL). The RIA facility includes a CW 1.4 GeV driver LINAC and a 100 MV post-accelerator both based on superconducting (SC) cavities operating at frequencies from 48 MHz to 805 MHz. An initial acceleration in both LINACs is provided by room temperature RFQs. The driver LINAC is designed for acceleration of any ion species; from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver LINAC is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. Basic design concepts of the driver LINAC are given. Several new conceptual solutions in beam dynamics, room temperature and SC accelerating structures for heavy ion accelerator applications are discussed.

    • MAFF — The Munich accelerator for fission fragments

      L Beck D Habs P Reiter P Thirolf T Sieber H Bongers S Emhofer H J Maier

      More Details Abstract Fulltext PDF

      At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 neutron-rich fission fragments per second are produced in the 1 g U-235 target. Ions with an energy of 30 keV are extracted from the ion source. In the mass separator two isotopes can be selected. One of the beams is used for low energy experiments, the other one is injected into an ECRIS (or EBIS) for charge breeding to a q/A≥0.16. A gas filled RFQ cooler is used for emittance improvement. The subsequent LINAC delivers beams with an energy ranging from 3.7 MeV/u to 5.9 MeV/u. New IH structures are being developed at the Munich tandem laboratory. A small storage ring is planned in a further stage to recycle the fission fragments. A thin target foil can be placed into this ring, e.g., for synthesis of super-heavy elements. The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test long term stability and safety tests were in progress.

    • The radioactive ion beam project at VECC, Kolkata-A status report

      Alok Chakrabarti

      More Details Abstract Fulltext PDF

      A project to build an ISOL-post accelerator type of radioactive ion beam (RIB) facility has been undertaken at VECC, Kolkata. The funding for the first phase of the project was approved in August 1997. This phase will be the R&D phase and will be completed by December 2003. The present status of development of the various sub-systems of the RIB facility will be discussed.

    • Post-accelerator LINAC design for the VECC RIB project

      Arup Bandyopadhyay

      More Details Abstract Fulltext PDF

      Variable Energy Cyclotron Centre (VECC) is presently developing an ISOL post-acclerator type of RIB facility. The scheme utilises the existing K=130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for the post-acceleration. The design aspects of these post-accelerator LINAC modules will be discussed in this paper.

    • Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation

      SS Kapoor

      More Details Abstract Fulltext PDF

      In this talk we present an overview of accelerator-driven sub-critical reactor systems (ADS), and bring out their attractive features for the elimination of troublesome long-lived components of the spent fuel, as well as for nuclear energy generation utilizing thorium as fuel. In India, there is an interest in the programmes of development of high-energy and high-current accelerators due to the potential of ADS in utilizing the vast resources of thorium in the country for nuclear power generation. The accelerator related activities planned in this direction will be outlined.

    • The R/D of high power proton accelerator technology in China

      Guan Xialing

      More Details Abstract Fulltext PDF

      In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

    • The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

      V Banerjee Alok Chakrabarti Arup Bandyopadhyay T K Bhaumik M Mondal T K Chakraborty H Pande O Kamigaito A Goto Y Yano

      More Details Abstract Fulltext PDF

      A radio frequency quadrupole LINAC has been designed for the VECC-RIB project for an input beam energy of 1.0 keV/u and q/A≥1/16. The output energy will be about 90 keV/u for a 3.4 m long, 35 MHz structure. A half-scale cold model of the RFQ has been fabricated and tested for rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

    • Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

      A M Porcellato G Bisoffi V Andreev G Bassato G Bezzon S Canella F Chiurlotto A Lombardi L Bertazzo D Conventi G Galeazzi S Marigo V Palmieri F Poletto T Shirai S Y Stark F Stivanello

      More Details Abstract Fulltext PDF

      SRFQ2 is the second RFQ superconducting (SC) structure of PIAVE, the positive ion injector of the SC LINAC for heavy ions ALPI, in operation at Legnaro.

      During 2001, SRFQ2 was extensively tested at cryogenic temperature reaching its design performance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 W dissipated power.

      This paper describes the treatments, the main difficulties arisen during the tests, the way they were overcome and the measurement sequences that allowed the characterization of SRFQ2 behavior. A brief description of future programs is also given.

    • Design of 57.5 MHz CW RFQ structure for the Rare Isotope Accelarator Facility

      P N Ostroumov A A Kolomiets D A Kashinsky S A Minaev V I Pershin T E Tretyakova S G Yaramishev

      More Details Abstract Fulltext PDF

      The Rare Isotope Accelerator (RIA) facility includes a driver LINAC for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz 4 m long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low longitudinal emittance: (2) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation; (3) simultaneous acceleration of two-charge states of uranium ions.

      CW operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed.

      This paper discusses beam dynamics and electrodynamics design of the RFQ cavity, as well as, some aspects of the mechanical design of this low-frequency CW RFQ.

    • An improved injector bunching geometry for ATLAS

      Richard C Pardo J Bogaty B E Clifft S Sherementov P Strickhorn

      More Details Abstract Fulltext PDF

      The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point significantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modified and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, significantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission-line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was supported by the U.S. Department of Energy under contract W-31-109-ENG-38.

    • Novel matching lens and spherical ionizer for a cesium sputter ion source

      D C Weisser N R Lobanov P A Hausladen L K Fifield H J Wallace S G Tims E G Apushkinsky

      More Details Abstract Fulltext PDF

      The beam optics of a multi-sample sputter ion source, based on the NEC MCSNICS, has been modified to accommodate cathode voltages higher than 5 kV and dispenses with the nominal extractor. The cathode voltage in Cs sputter sources plays the role of the classical extractor accomplishing the acceleration of beam particles from eV to keV energy, minimizing space charge effects and interactions between the beam and residual gas. The higher the cathode voltage, the smaller are these contributions to the emittance growth. The higher cathode voltage also raises the Child’s law limit on the Cs current resulting in substantially increased output. The incidental focusing role of the extractor is reallocated to a deceleration Einzel lens and the velocity change needed to match to the pre-acceleration tube goes to a new electrode at the tube entrance. All electrodes are large enough to ensure that the beam fills less than 30% of the aperture to minimize aberrations. The improvements are applicable to sputter sources generally.

    • Beam diagnostic developments at the cooler synchrotron COSY-Jülich

      J Dietrich I Mohos

      More Details Abstract Fulltext PDF

      New developments of beam diagnostic devices and methods at the cooler synchrotron and storage ring COSY at the Forschungszentrum Jülich are described. A Schottky-pickup was tested and installed. The new pickup consists of four diagonally arranged plates which can be combined by means of relays to measure either in the horizontal or in the vertical plane. A new method for resonant tuning of the Schottky-pickup for transversal measurements was realized. A tune meter was developed for real-time tune measurements in the acceleration ramp and is used as routine diagnostic tool. Based on the developed bunch synchronous tracking generator an on-line phase space measurement was realized. For beam profile measurements a residual-gas ionization beam profile monitor was installed in the COSY-ring and tested. To measure the beam quality in case of fast and slow extraction a universal spill detector was developed and tested in the extraction beam line.

    • Study on using high injection voltage and spiral inflector in the central region of VEC

      VS Pandit

      More Details Abstract Fulltext PDF

      A feasibility study of using high injection voltage and spiral inflector in the present heavy ion central region of VEC is described. Conditions necessary for waist-to-waist transfer of the ion beam in the hole lens of main magnet have been obtained. The results of orbit studies of a variety of heavy ions indicate that a spiral inflector can be used in the central region.

    • A Java-based control system for the Orsay tandem accelerator

      Dominique Delbourg Gérard Penillault Tran Khan Tuong Martial Decourt Nicole Borome Henri Harroch Bertrand Lessellier Bernard Waast Jean Pierre Mouffron

      More Details Abstract Fulltext PDF

      A new control system was designed for the tandem MP-9 at Orsay. Because of the existing devices located on high voltage platforms and the lack of space inside the accelerator, in-house electronic cards based on micro-controllers and an optical fieldbus were developed to collect data. VME processors under VxWorks, a real time operating system, manage the fieldbus, concentrate the accelerator information and transmit it to the supervisory software through the ethernet network. This software consists of a collection of Java virtual machines (JVM) running on several Unix work-stations and PCs under Windows. Some of the Java virtual machines manage apparatus, instruments, local display and connections to an object database and VME concentrators. Other manage general synoptics. JVMs communicate between themselves with RMI protocol and JRPC with VME concentrators. So the supervisory software can be spread over several control stations throughout the network.

    • A controller for 97 MHz super-conducting QWR for NSC LINAC booster

      Gopal Joshi CI Sujo Bhuban Sahu Ashutosh Pandey Ajith Kumar Jitendra Karande

      More Details Abstract Fulltext PDF

      A resonator controller has been implemented to stabilize the amplitude and phase of rf fields in the super-conducting resonators of NSC LINAC. Due to reduced losses these resonators have intrinsic band width of the order of 0.1 Hz at 97 MHz whereas the vibration-induced center frequency changes are of the order of a few tens of hertz. In the control strategy followed, the resonator is made the frequency selective part of an oscillator. The phase lock is achieved by dynamically adding a phase shift in the oscillator. A slow tuner minimizes the slow drifts in the resonator center frequency. In this paper we present the control strategy, implementation details and performance obtained with this controller.

    • Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator

      Christof Vockenhuber Robin Golser Walter Kutschera Alfred Priller Peter Steier Stephan Winkler Vitaly Liechtenstein

      More Details Abstract Fulltext PDF

      A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). The original design of the beam transport components allows the transport of ions of all elements, from the lightest to the heaviest. For light ions the suppression of neighboring masses was sufficient to measure isotopic ratios of 14C/12C and 26Al/27Al as low as 10−15 and 10Be/9Be down to 10−13. To suppress neighboring masses for the heaviest radionuclides in the energy range of 10–20 MeV, the resolution of VERA was increased both by improving the ion optics of existing elements at the injection side and by installing a new high-resolution electrostatic separator at the high-energy side. Interfering ions which pass all beam filters are identified with a Bragg-type ionization detector and a high-resolution time-of-flight system. Two ultra-thin diamond-like carbon (DLC) foils are used in the start and stop detector, which substantially reduces losses due to beam straggling. This improved set up enables us to measure even the heaviest long-lived radionuclides, where stable isobaric interferences are absent (e.g. 236U and 244Pu), down to environmental levels. Moreover, the advantage of a ‘small’ and well manageable machine like VERA lies in its higher stability and reliability which allows to measure these heavy radionuclides more accurately, and also a large number of samples.

    • A small and compact AMS facility for tritium depth profiling

      M Friedrich W Pilz N Bekris M Glugla M Kiisk V Liechtenstein

      More Details Abstract Fulltext PDF

      Depth profiling measurements of tritium in carbon samples have been performed during the past seven years at the AMS facility installed at the Rossendorf 3 MV Tandetron. The samples have been cut from the inner walls of the fusion experiments ASDEX-upgrade/Garching and JET/Culham. The tritium content of the samples from JET required a dedicated AMS facility to prevent any contamination of the versatile 3 MV Tandetron. On the basis of an air-insulated 100 kV tandem accelerator equipped with a gas stripper an AMS facility exclusively devoted to tritium depth profiling was installed, tested and used for routine measurements. After additional successful tests employing diamond-like carbon (DLC) stripper foils at this accelerator, another small and compact 100 kV tandem accelerator with SF6 insulation and a DLC stripper has been installed at the AMS facility. Results obtained with the different tandem accelerators are presented.

    • A high resolution AMS-injector for the Pelletron in Lund

      R Hellborg S Bazhal M Faarinen K Håkansson C-E Magnusson P Persson G Skog K Stenström

      More Details Abstract Fulltext PDF

      A high resolution injector system has recently been installed at the Lund 3 MV tandem Pelletron accelerator. The new injector, designed mainly for 26Al ions, will increase the experimental potential of the Lund AMS facility considerably. High quality energy- and mass-resolution is obtained by using a 90° spherical electrostatic analyzer followed by a 90° magnetic analyzer. The injector is equipped with a high intensity sputtering source with a spherical ionizer.

      A new analytical technique for acceptance calculations as well as PC-based computational methods have been used in the design of the ion optical system of the new injector.

      Compared to our old injector system which has a magnetic analyzer with a bending angle of only 15°, the new system has a more than ten times better resolution. The beam optics of the new system is also better designed to match the accelerator acceptance. In this way the ion transmission from the ion source to the detector, for different ions of interest in our AMS programme, has been increased.

    • Probing magnetochirality

      Rupamanjari Ghosh

      More Details Fulltext PDF
    • One dimensional multiple-well oscillators: A time-dependent quantum mechanical approach

      Neetu Gupta Amlan K Roy B M Deb

      More Details Fulltext PDF
    • List of Participants

      More Details Abstract Fulltext PDF
    • Subject Index

      More Details Abstract Fulltext PDF
    • Author Index

      More Details Abstract Fulltext PDF
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.