• Volume 25, Issue 1-2

      March 2004,   pages  1-101

    • Optical variability properties of high luminosity AGN classes

      C. S. Stalin Gopal-Krishna Ram Sagar Paul J. Wiita

      More Details Abstract Fulltext PDF

      We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift rangez ≃ 0.2 toz ≃ 2.2. The sample, matched in the optical luminosity—redshift(MB—z) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of ESfOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOV amplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOV duty cycle of the AGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs (1029 + 329 & 1252 + 020) in our sample which has yielded a 5 GHz detection in one of them (1252 + 020;S5GHZ ≃ 1 mJy).

    • Associated HI absorption in thez = 3.4 radio galaxy B2 0902 + 343 observed with the GMRT

      Poonam Chandra Govind Swarup Vasant K. Kulkarni Nimisha G. Kantharia

      More Details Abstract Fulltext PDF

      We have made observations of the as sociated HI absorption of a high redshift radio galaxy 0902+34 atz = 3.395 with the Giant Meterwave Radio Telescope in the 323 ± 1 MHz band. We find a narrow absorption line with a flux density of 11.5 mJy at a redshift of 3.397 consistent with that observed by Usonet al. (1991), Briggset al. (1993) and de Bruyn (1996). A weak broad absorption feature reported by de Bruyn (1996) has not been detected in our observations. We also place an upper limit of 4mJy(2σ) on emission line strength at the position where Usonet al. (1991) claimed to have found a narrow emission line.

    • HI fluctuations at large redshifts: III — Simulating the signal expected at GMRT

      Somnath Bharadwaj Pennathur Sridharan Srikant

      More Details Abstract Fulltext PDF

      We simulate the distribution of neutral hydrogen (HI) at the redshiftsz = 1.3 and 3.4 using a cosmological N-body simulation along with a prescription for assigning HI masses to the particles. The HI is distributed in clouds whose properties are consistent with those of the damped Lyman-a absorption systems (DLAs) seen in quasar spectra. The clustering properties of these clouds are identical to those of the dark matter. We use this to simulate the redshifted HI emission expected at 610 MHz and 325 MHz, two of the observing bands at the GMRT. These are used to predict the correlations expected between the complex visibilities measured at different baselines and frequencies in radio-interferometric observations with the GMRT. The visibility correlations directly probe the power spectrum of HI fluctuations at the epoch when the HI emission originated, and this holds the possibility of using HI observations to study large-scale structures at highz.

    • Angular momentum transport in quasi-Keplerian accretion disks

      Prasad Subramanian B. S. Pujari Peter A. Becker

      More Details Abstract Fulltext PDF

      We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

    • Radial matrix elements of hydrogen atom and the correspondence principle

      T. N. Chakrabarty

      More Details Abstract Fulltext PDF

      Radial dipole matrix elements having astrophysical importance have been computed for highly excited states of hydrogen atom. Computation is based on Heisenberg’s form of correspondence principle for Coulomb potential. Particular attention has been paid to the choice of classical analogue(nc) of principal quantum number (n). The computed radial matrix elements are in good agreement with quantum mechanical results. Further, radial matrix elements for few transitions involving highn neighboring states of hydrogen atom are presented.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.