• Volume 23, Issue 3-4

      December 2002,   pages  173-264

    • Connecting global to local parameters in barred galaxy models

      N. D. Caranicolas

      More Details Abstract Fulltext PDF

      We present connections between global and local parameters in a realistic dynamical model, describing motion in a barred galaxy. Expanding the global model in the vicinity of a stable Lagrange point, we find the potential of a two-dimensional perturbed harmonic oscillator, which describes local motion near the centre of the global model. The frequencies of oscillations and the coefficients of the perturbing terms are not arbitrary but are connected to the mass, the angular rotation velocity, the scale length and the strength of the galactic bar. The local energy is also connected to the global energy. A comparison of the properties of orbits in the global and local potential is also made.

    • TreePM: A code for cosmological N-body simulations

      J. S. Bagla

      More Details Abstract Fulltext PDF

      We describe the TreePM method for carrying out large N-Body simulations to study formation and evolution of the large scale structure in the Universe. This method is a combination of Barnes and Hut tree code and Particle-Mesh code. It combines the automatic inclusion of periodic boundary conditions of PM simulations with the high resolution of tree codes. This is done by splitting the gravitational force into a short range and a long range component. We describe the splitting of force between these two parts. We outline the key differences between TreePM and some other N-Body methods.

    • Spectral measurements of Cyg X-3: A thermal source embedded in hot plasma within a cold shell

      R. K. Manchanda

      More Details Abstract Fulltext PDF

      The attempts at unified model fitting to explain the spectral variations in Cyg X-3 suggest equally probable fits with a combination of an absorbed blackbody and a separately absorbed power law with an exponential cut-off or a composite of absorbed free-free emission with a power law hard X-ray component apart from the iron emission line. These seemingly ordinary but ad hoc mixtures of simple X-ray emission mechanisms have a profound implication about the geometry of the X-ray source. While the first set suggests a black-hole nature of the compact object, the second combination is consistent with a neutron star binary picture. The spectral variability at hard X-ray energies above 30 keV can provide crucial input for the unified picture. In this paper, we present spectral observations of Cyg X-3, made in our on-going survey of galactic and extragalactic X-ray sources in the 20–200 keV energy region, using Large Area Scintillation counter Experiment. The data show a clear power-law photon spectrum of the form dN/dE ∼ E−2.8 in the 20 to 130 keV energy range. A comparison with earlier data suggests that the total number of X-ray photons in the entire 2–500 keV energy band is conserved at all time for a given luminosity level irrespective of the state. We propose that this behaviour can be explained by a simple geometry in which a thermal X-ray source is embedded in a hot plasma formed by winds from the accretion disk within a cold shell. The high/soft and low/hard X-ray states of the source are simply the manifestation of the extent of the surrounding scattering medium in which the seed photons are Comptonized and hot plasma can be maintained by either the X-ray driven winds or the magneto-centrifugal winds.

    • Fast transition between high-soft and low-soft states in GRS 1915 + 105: Evidence for a critically viscous accretion flow

      S. Naik A. R. Rao Sandip K. Chakrabarti

      More Details Abstract Fulltext PDF

      We present the results of a detailed analysis of RXTE observations of classω (Klein-Woltet al. 2002) which show an unusual state transition between high-soft and low-soft states in the Galactic microquasar GRS 1915 + 105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasion) when hard X-ray and radio flux were very low. The X-ray light curve and colour-colour diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ∼ 3.5, is observed to be very fast (∼ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of classω and the PDS is a power law in the 0.1–10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in this set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of classω is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.

    • On the relativistic beaming and orientation effects in core-dominated quasars

      A. A. Ubachukwu A. E. Chukwude

      More Details Abstract Fulltext PDF

      In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of core-to lobe-flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor,γopt∼ 6–16, and also highly anisotropic, with an average viewing angle, ∼ 9°–16°. Furthermore, the largest boosting occurs within a critical cone angle of ≈ 4°–10°.

    • Spectral variability in hard X-rays and the evidence for a 13.5 years period in the bright quasar 3C273

      R. K. Manchanda

      More Details Abstract Fulltext PDF

      We report the observation of nearest quasar 3C273 made with LASE instrument on November 20th, 1998 as a part of our continuing programme of balloon borne hard X-ray observations in the 20–200 keV band using high sensitivity Large Area Scintillation counter Experiment. Our data clearly show a steep spectrum in the 20–200 keV with power law spectral indexα = 2.26 ± 0.07. This is in complete contrast to the reported data from OSSE and BeppoSAX which suggest the value of 1.3 to 1.6 for the power law index in the X-ray energy band, but is quite consistent with the value derived for the high energy gamma ray data. A single power law fit in the X-ray and gamma ray energy bands points to a common origin of these photons and the absence of spectral break around 1 MeV as suggested in literature. We have reanalyzed the available data to study the temporal variability of the spectrum in the hard X-ray band. Our analysis reveals that 50 keV flux from the source, shows a strong modulation with a period of about 13.5 years. The analysis of the optical light curve of the source also supports the 5000 day period. We discuss the emission mechanism and the possible sites for X-ray photons along with the implications of the long term periodicity with respect to source geometry.

    • Author Index

      More Details Abstract Fulltext PDF
    • Subject Index

      More Details Abstract Fulltext PDF
  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.