• Issue front cover thumbnail

      Volume 89, Issue 3

      September 2010,   pages  269-390

    • Preface

      J. Nagaraju Giuseppe Saccone

      More Details Abstract Fulltext PDF
    • The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination

      Leonard Rabinow Marie-Laure Samson

      More Details Abstract Fulltext PDF

      DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa alleles induce somatic female-to-male sex transformations, which can be enhanced when combined with mutations in loci encoding SR and SR-like proteins. The Doa locus encodes six different kinases, of which a 69-kDa isoform is expressed solely in females. Expression of this isoform is itself under the regulation of the somatic sex determination regulatory network, thus forming a putative positive autoregulatory loop which would reinforce the choice of the female cell-fate. We speculate that this loop is part of the evolutionary ancestral sex-determination machinery, based upon evidence demonstrating the existence of an autoregulatory loop involving TRA and TRA2 in several other insect species.

    • Conservation and sex-specific splicing of the doublesex gene in the economically important pest species Lucilia cuprina

      Carolina Concha Fang Li Maxwell J. Scott

      More Details Abstract Fulltext PDF

      Genetic control of sex determination in insects has been best characterized in Drosophila melanogaster, where the master gene Sxl codes for RNA that is sex specifically spliced to produce a functional protein only in females. SXL regulates the sex-specific splicing of transformer (tra) RNA which, in turn, regulates the splicing of dsx RNA to produce functional male and female proteins. In the Australian sheep blowfly (Lucilia cuprina), the tra gene (Lctra) is required for female development and Lctra transcripts are sex-specifically spliced such that only female Lctra mRNA codes for functional protein. In males, a factor encoded by the Y-linked male determining gene is thought to prevent the female-mode of splicing of Lctra RNA. To further our understanding of the sex determination regulatory hierarchy in L. cuprina, we have isolated the dsx gene (Lcdsx) from this species. We found that the Lcdsx transcripts are sex-specifically spliced in a similar manner as their counterparts in D. melanogaster, housefly and tephritids. The LcDSX proteins are well conserved and the male form of DSX contains a motif encoded by a male-specific exon that is within the female-specific intron. This intron/exon arrangement had previously been found only in the housefly dsx gene, suggesting this may be a unique feature of dsx genes of Calyptratae species.

    • fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story?

      Marco Salvemini Catello Polito Giuseppe Saccone

      More Details Abstract Fulltext PDF

      Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specificcourtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.

    • Use of a regulatory mechanism of sex determination in pest insect control

      Tarig Dafa'alla Gouliang Fu Luke Alphey

      More Details Abstract Fulltext PDF

      The sexual development of an insect is defined through a hierarchical control of several sex determining genes. Of these genes, transformer (tra) and doublesex (dsx) are well characterized and functionally conserved, especially dsx. Both genes are regulated at the transcriptional level through sex-specific alternative splicing. Incorporation of a genetically engineered sex-specific splicing module derived from these genes in transgenic systems, such as RIDL (release of insects carrying a dominant lethal), would allow the production of male-only insects for control programmes without any physical intervention.

    • New Y chromosomes and early stages of sex chromosome differentiation: sex determination in Megaselia

      Walther Traut

      More Details Abstract Fulltext PDF

      The phorid fly Megaselia scalaris is a laboratory model for the turnover and early differentiation of sex chromosomes. Isolates from the field have an XY sex-determining mechanism with chromosome pair 2 acting as X and Y chromosomes. The sex chromosomes are homomorphic but display early signs of sex chromosome differentiation: a low level of molecular differences between X and Y. The male-determining function $(M)$, maps to the distal part of the Y chromosome’s short arm. In laboratory cultures, new Y chromosomes with no signs of a molecular differentiation arise at a low rate, probably by transposition of 𝑀 to these chromosomes. Downstream of the primary signal, the homologue of the Drosophila doublesex (dsx) is part of the sex-determining pathway while Sex-lethal (Sxl), though structurally conserved, is not.

    • About females and males: continuity and discontinuity in flies

      Daniel Bopp

      More Details Abstract Fulltext PDF
    • Sciara as an experimental model for studies on the evolutionary relationships between the zygotic, maternal and environmental primary signals for sexual development

      Lucas Sánchez

      More Details Abstract Fulltext PDF

      Sex determination refers to the developmental programme that commits the embryo to either the male or the female pathway. There are a plethora of mechanisms via which gender is decided. These mechanisms can be classified into three main categories depending on the origin of the primary, genetic, sex-determination signal, which can be zygotic, maternal or environmental. In the dipteran Sciara, the zygotic signal is a consequence of the maternal signal, and this in turn can be a consequence of the environmental signal. This makes Sciara a unique experimental model for studying the evolutionary relationships between the three primary signals triggering sexual development.

    • Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea)

      Leo W. Beukeboom Louis Van De Zande

      More Details Abstract Fulltext PDF

      The parasitoid wasp Nasonia vitripennis reproduces by haplodiploidy; males are haploid and females are diploid. Sex determination in Nasonia is not governed by complementary alleles at one or more sex loci. As in most other insects, the sex-determining pathway consists of the basal switch doublesex that is sex-specifically regulated by transformer. Analysis of a polyploid and a mutant gynandromorphic strain, suggested a parent-specific effect (imprinting) on sex determination in Nasonia. Zygotic activity of transformer is autoregulated and depends on a combination of maternal provision of tra mRNA and a paternal genome set. This constitutes a novel way of transformer control in insect sex determination implying maternal imprinting. The nature of the maternal imprint is not yet known and it remains to be determined how broadly the Nasonia sex-determining mechanism applies to other haplodiploids.

    • Doublesex: a conserved downstream gene controlled by diverse upstream regulators

      J. N. Shukla J. Nagaraju

      More Details Abstract Fulltext PDF

      Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

    • Sex determination: insights from the silkworm

      Masataka G. Suzuki

      More Details Abstract Fulltext PDF

      The sex-determining system differs considerably among organisms. Even among insect species, the genetic system for sex-determination is highly diversified. In Drosophila melanogaster, somatic sexual differentiation is regulated by a well characterized genetic hierarchy X : A > Sxl > tra/tra2 > dsx and fru. This cascade seems to control sex determination in all Drosophila species and is partially conserved in another dipteran species, Ceratitis capitata: Cctra/Cctra-2 > Ccdsx and Ccfru. However, in the silkworm, Bombyx mori, femaleness is determined by the presence of a dominant feminizing factor on the W chromosome. Moreover, no sex-specific regulatory Sxl homolog has been isolated from B. mori. Also, no tra homolog has yet been found in the Bombyx genome. Despite such differences, dsx homolog of B. mori (Bmdsx) is implicated in the sex determination. Bmdsx produces alternatively spliced mRNA isoforms that encode sex specific transcription factors as observed in dsx. While the female-specific splicing of dsx is activated by splicing activators, Tra and Tra2, the female splicing of Bmdsx represents the default mode. Instead, a splicing inhibitor, BmPSI is involved in the regulation of male-specific splicing of Bmdsx. Since BmPSI does not exhibit any sequence relationship to known SR proteins, such as Tra and Tra2, the regulatory mechanism of sex-specific alternative splicing of Bmdsx is distinct from that of dsx.

    • Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori

      Tsuguru Fujii Hiroaki Abe Toru Shimada

      More Details Abstract Fulltext PDF

      In Bombyx mori, the W chromosome determines the female sex. A few W chromosome-linked mutations that cause masculinization of the female genitalia have been found. In female antennae of a recently isolated mutant, both female-type and male-type Bmdsx mRNAs were expressed, and BmOr1 (bombykol receptor) and BmOr3 (bombykal receptor), which are predominantly expressed in the antennae of male moths, were expressed about 50 times more abundantly in the antennae of mutant females than in those of normal females. These mutants are valuable resources for the molecular analysis of the sex-determination system. Besides the Fem gene, the quantitative egg size-determining gene Esd is thought to be present on the W chromosome, based on the observation that ZWW triploid moths produce larger eggs than ZZW triploids. The most recently updated B. mori genome assembly comprises 20.5 Mb of Z chromosome sequence. Using these sequence data, responsible genes or candidate genes for four Z-linked mutants have been reported. The od (distinct oily) and spli (soft and pliable) are caused by mutation in BmBLOS2 and Bmacj6, respectively. Bmap is a candidate gene for $V_g$ (vestigial). Similarly, Bmprm is a candidate gene for Md (muscle dystrophy), causing abnormal development of indirect flight muscle.

    • Novel non-autonomous transposable elements onWchromosome of the silkworm, Bombyx mori

      Hiroaki Abe Tsuguru Fujii Toru Shimada Kazuei Mita

      More Details Abstract Fulltext PDF

      The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in theWGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.

    • How is sex determined in insects? An epilogue

      J. Nagaraju Giuseppe Saccone

      More Details Abstract Fulltext PDF
  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.