• Volume 82, Issue 3

      December 2003,   pages  77-223

    • Evolutionary genetics: TheDrosophila model - Preface

      Amitabh Joshi

      More Details Fulltext PDF
    • Genetic variability of sexual size dimorphism in a natural population ofDrosophila melanogaster: An isofemale-line approach

      Jean R. David Patricia Gibert Sandrine Mignon-Grasteau HÉlÈne Legout Georges PÉtavy Catherine Beaumont Brigitte Moreteau

      More Details Abstract Fulltext PDF

      Most animal species exhibit sexual size dimorphism (SSD). SSD is a trait difficult to quantify for genetical purposes since it must be simultaneously measured on two kinds of individuals, and it is generally expressed either as a difference or as a ratio between sexes. Here we ask two related questions: What is the best way to describe SSD, and is it possible to conveniently demonstrate its genetic variability in a natural population? We show that a simple experimental design, the isofemale-line technique (full-sib families), may provide an estimate of genetic variability, using the coefficient of intraclass correlation. We consider two SSD indices, the female-male difference and the female/male ratio. For two size-related traits, wing and thorax length, we found that both SSD indices were normally distributed. Within each family, the variability of SSD was estimated by considering individual values in one sex (the female) with respect to the mean value in the other sex (the male). In a homogeneous sample of 30 lines ofDrosophila melanogaster, both indices provided similar intraclass correlations, on average 0.21, significantly greater than zero but lower than those for the traits themselves: 0.50 and 0.36 for wing and thorax length respectively. Wing and thorax length were strongly positively correlated within each sex. SSD indices of wing and thorax length were also positively correlated, but to a lesser degree than for the traits themselves. For comparative evolutionary studies, the ratio between sexes seems a better index of SSD since it avoids scaling effects among populations or species, permits comparisons between different traits, and has an unambiguous biological significance. In the case ofD. melanogaster grown at 25‡C, the average female/male ratios are very similar for the wing (1.16) and the thorax (1.15), and indicate that, on average, these size traits are 15–16% longer in females.

    • Mild heat stress at a young age inDrosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life

      Torsten Nygaard Kristensen Jesper Givskov SØrensen Volker Loeschcke

      More Details Abstract Fulltext PDF

      In a number of animal species it has been shown that exposure to low levels of stress at a young age has a positive effect on stress resistance later in life, and on longevity. The positive effects have been attributed to the activation of defence/cleaning systems (heat shock proteins (Hsps), antioxidases, DNA repair) or to effects of a changed metabolic rate, or both. We investigated the effect of mild stress exposures early in life on Hsp70 synthesis after a harder stress exposure later in life in five isofemale lines ofDrosophila melanogaster. Female flies were either exposed to repeated bouts of mild heat stress (3 h at 34‡C) at a young age (days 2, 4 and 6 post-eclosion) or held under standard laboratory conditions. At 16 and 32 days of adult age, respectively, flies were exposed to a high temperature treatment known to induce Hsp70 in the investigated species (1 h at 37‡C). Thereafter, the inducible Hsp70 levels were measured. Our data show a tendency towards increased Hsp70 synthesis with increased age for both ’mild stress’ and ’no stress’ flies. Moreover, the results show that flies exposed to mild stress at a young age synthesized more Hsp70 upon induction, compared to control flies, and that this difference was accentuated at 32 days compared to 16 days of age. Thus, bouts of mild heat stress at a young age impact on the physiological stress response system later in life. This may be caused by an increased ability to react to future stresses. Alternatively, the mild stress exposure at a young age may actually have caused cellular damages increasing the need for Hsp70 levels after stress exposure later in life. The importance of an Hsp70 upregulation (throughout life) in explaining the phenomenon of hormesis is discussed, together with alternative hypotheses, and suggestions for further studies.

    • Quantitative-genetic analysis of wing form and bilateral asymmetry in isochromosomal lines ofDrosophila subobscura using Procrustes methods

      Pedro Fernández Iriarte Walkiria Céspedes Mauro Santos

      More Details Abstract Fulltext PDF

      Fluctuating asymmetry (FA) is often used as a measure of underlying developmental instability (DI), motivated by the idea that morphological variance is maladaptive. Whether or not DI has evolutionary potential is a highly disputed topic, marred by methodological problems and fuzzy prejudices. We report here some results from an ongoing study of the effects of karyotype, homozygosity and temperature on wing form and bilateral asymmetry using isochromosomal lines ofDrosophila subobscura. Our approach uses the recently developed methodologies in geometric morphometrics to analyse shape configurations of landmarks within the standard statistical framework employed in studies of bilateral asymmetries, and we have extended these methods to partition the individual variation and the variation in asymmetries into genetic and environmental causal components. The analyses revealed temperaturedependent expression of genetic variation for wing size and wing shape, directional asymmetry (DA) of wing size, increased asymmetries at suboptimal temperature, and a transition from FA to DA in males as a result of increase in the rearing temperature. No genetic variation was generally detected for FA in our samples, but these are preliminary results because no crosses between lines were carried out and, therefore, the contribution of dominance was not taken into account. In addition, only a subset of the standing genetic variation was represented in the experiments.

    • Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster

      Evgeniys Balakirev Francisco J. Ayala

      More Details Abstract Fulltext PDF

      We have investigated nucleotide polymorphism at theβ-esterase gene cluster including theEst-6 gene andψEst-6 putative pseudogene in four samples ofDrosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplotype structure is revealed in bothEst-6 andψEst-6. Total nucleotide diversity is twice inψEst-6 as inEst-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within theβ-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected withinEst-6 and, to a much greater extent, withinyEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for theβ-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in theb-esterase gene cluster. However there are some ’footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection betweenEst-6 andψEst-6 may play an important role in the evolution of theβ-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene.Est-6 andyEst-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 orψEst-6) cannot separately carry out the full functional role.

    • The devil in the details of life-history evolution: Instability and reversal of genetic correlations during selection onDrosophila development

      Adam K. Chippindale Anh L. Ngo Michael R. Rose

      More Details Abstract Fulltext PDF

      The evolutionary relationships between three major components of Darwinian fitness, development rate, growth rate and preadult survival, were estimated using a comparison of 55 distinct populations ofDrosophila melanogaster variously selected for age-specific fertility, environmental-stress tolerance and accelerated development. Development rate displayed a strong net negative evolutionary correlation with weight at eclosion across all selection treatments, consistent with the existence of a size-versus-time tradeoff between these characters. However, within the data set, the magnitude of the evolutionary correlation depended upon the particular selection treatments contrasted. A previously proposed tradeoff between preadult viability and growth rate was apparent only under weak selection for juvenile fitness components. Direct selection for rapid development led to sharp reductions in both growth rates and viability. These data add to the mounting results from experimental evolution that illustrate the sensitivity of evolutionary correlations to (i) genotype-by-environment (G X E) interaction, (ii) complex functional-trait interactions, and (iii) character definition. Instability, disappearance and reversal of patterns of genetic covariation often occur over short evolutionary time frames and as the direct product of selection, rather than some stochastic process. We suggest that the functional architecture of fitness is a rapidly evolving matrix with reticulate properties, a matrix that we understand only poorly.

    • The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution

      Amitabh Joshi Robinson B. Castillo Laurence D. Mueller

      More Details Abstract Fulltext PDF

      The relative contributions of ancestry, chance, and past and ongoing election to variation in one adaptive (larval feeding rate) and one seemingly nonadaptive (pupation height) trait were determined in populations ofDrosophila melanogaster adapting to either low or high larval densities in the laboratory. Larval feeding rates increased rapidly in response to high density, and the effects of ancestry, past selection and chance were ameliorated by ongoing selection within 15–20 generations. Similarly, in populations previously kept at high larval density, and then switched to low larval density, the decline of larval feeding rate to ancestral levels was rapid (15-20 generations) and complete, providing support for a previously stated hypothesis regarding the costs of faster feeding inDrosophila larvae. Variation among individuals was the major contributor to variation in pupation height, a trait that would superficially appear to be nonadaptive in the environmental context of the populations used in this study because it did not diverge between sets of populations kept at low versus high larval density for many generations. However, the degree of divergence among populations (FST) for pupation height was significantly less than expected for a selectively neutral trait, and we integrate results from previous studies to suggest that the variation for pupation height among populations is constrained by stabilizing selection, with a flat, plateau-like fitness function that, consequently, allows for substantial phenotypic variation within populations. Our results support the view that the genetic imprints of history (ancestry and past selection) in outbreeding sexual populations are typically likely to be transient in the face of ongoing selection and recombination. The results also illustrate the heuristic point that different forms of selection-for example directional versus stabilizing selection—acting on a trait in different populations may often not be due to differently shaped fitness functions, but rather due to differences in how the fitness function maps onto the actual distribution of phenotypes in a given population. We discuss these results in the light of previous work on reverse evolution, and the role of ancestry, chance, and past and ongoing selection in adaptive evolution.

    • Hybridization, transgressive segregation and evolution of new genetic systems inDrosophila

      H. A. Ranganath S. Aruna

      More Details Abstract Fulltext PDF

      Introgressive hybridization facilitates incorporation of genes from one species into the gene pool of another. Studies on long-term effects of introgressive hybridization in animal systems are sparse.Drosophila nasuta (2n = 8) andD. albomicans (2n = 6)—a pair of allopatric, morphologically almost identical, cross-fertile members of thenasuta subgroup of theimmigrans species group-constitute an excellent system to analyse the impact of hybridization followed by transgressive segregation of parental characters in the hybrid progeny. Hybrid populations ofD. nasuta andD. albomicans maintained for over 500 generations in the laboratory constitute new recombinant hybrid genomes, here termed cytoraces. The impact of hybridization, followed by introgression and transgressive segregation, on chromosomal constitution and karyotypes, some fitness parameters, isozymes, components of mating behaviour and mating preference reveals a complex pattern of interracial divergence among parental species and cytoraces. This assemblage of characters in different combinations in a laboratory hybrid zone allows us to study the emergence of new genetic systems. Here, we summarize results from our ongoing studies comparing these hybrid cytoraces with the parental species, and discuss the implications of these findings for our understanding of the evolution of new genetic systems.

    • Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential

      Andréa Magiafoglou Ary Hoffmann

      More Details Abstract Fulltext PDF

      To investigate the ability ofDrosophila serrata to adapt to thermal conditions over winter at the species southern border, replicate lines from three source locations were held as discrete generations over three years at either 19‡C (40 generations) or temperatures fluctuating between 7‡C and 18δC (20 generations). Populations in the fluctuating environment were maintained either with an adult 0‡C cold shock or without a shock. These conditions were expected to result in temperature-specific directional selection for increased viability and productivity under both temperature regimes, and reduced development time under the fluctuating-temperature regime. Selection responses of all lines were tested under both temperature regimes after controlling for carry-over effects by rearing lines in these environments for two generations. When tested in the 19‡C environment, lines evolving at 19‡C showed a faster development time and a lower productivity relative to the other lines, while cold shock reduced development time and productivity of all lines. When tested in the fluctuating environment, productivity of the 7–18‡C lines selected with a cold shock was relatively lower than that of lines selected without a shock, but this pattern was not observed in the other populations. Viability and body size as measured by wing length were not altered by selection or cold shock, although there were consistent effects of source population on wing length. These results provide little evidence for temperature-specific adaptation inD. serrata —although the lines had diverged for some traits, these changes were not consistent with a priori predictions. In particular, there was no evidence for life-history changes reflecting adaptation to winter conditions at the southern border. The potential forD. serrata to adapt to winter conditions may therefore be limited.

    • Variation in adult life history and stress resistance across five species ofDrosophila

      N. Sharmila Bharathi N. G. Prasad Mallikarjun Shakarad Amitabh Joshi

      More Details Abstract Fulltext PDF

      Dry weight at eclosion, adult lifespan, lifetime fecundity, lipid and carbohydrate content at eclosion, and starvation and desiccation resistance at eclosion were assayed on a long-term laboratory population ofDrosophila melanogaster, and one recently wild-caught population each of four other species ofDrosophila, two from themelanogaster and two from theimmigrans species group. The relationships among trait means across the five species did not conform to expectations based on correlations among these traits inferred from selection studies onD. melanogaster. In particular, the expected positive relationships between fecundity and size/lipid content, lipid content and starvation resistance, carbohydrate (glycogen) content and desiccation resistance, and the expected negative relationship between lifespan and fecundity were not observed. Most traits were strongly positively correlated between sexes across species, except for fractional lipid content and starvation resistance per microgram lipid. For most traits, there was evidence for significant sexual dimorphism but the degree of dimorphism did not vary across species except in the case of adult lifespan, starvation resistance per microgram lipid, and desiccation resistance per microgram carbohydrate. Overall,D. nasuta nasuta andD. sulfurigaster neonasuta (immigrans group) were heavier at eclosion than themelanogaster group species, and tended to have somewhat higher absolute lipid content and starvation resistance. Yet, these twoimmigrans group species were shorter-lived and had lower average daily fecundity than themelanogaster group species. The smallest species,D. malerkotliana (melanogaster group), had relatively high daily fecundity, intermediate lifespan and high fractional lipid content, especially in females.D. ananassae (melanogaster group) had the highest absolute and fractional carbohydrate content, but its desiccation resistance per microgram carbohydrate was the lowest among the five species. In terms of overall performance, the laboratory population ofD. melanogaster was clearly superior, under laboratory conditions, to the other four species if adult lifespan, lifetime fecundity, average daily fecundity, and absolute starvation and desiccation resistance are considered. This finding is contrary to several recent reports of substantially higher adult lifespan and stress resistance in recently wild-caught flies, relative to flies maintained for a long time in discretegeneration laboratory cultures. Possible explanations for these apparent anomalies are discussed in the context of the differing selection pressures likely to be experienced byDrosophila populations in laboratory versus wild environments.

    • Latitudinal clines inDrosophila melanogaster: Body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway

      Gerdien de Jong Zoltán Bochdanovits

      More Details Abstract Fulltext PDF

      Many latitudinal clines exist inDrosophila melanogaster: in adult body size, in allele frequency at allozyme loci, and in frequencies of common cosmopolitan inversions. The question is raised whether these latitudinal clines are causally related. This review aims to connect data from two very different fields of study, evolutionary biology and cell biology, in explaining such natural genetic variation inD. melanogaster body size and development time. It is argued that adult body size clines, inversion frequency clines, and clines in allele frequency at loci involved in glycolysis and glycogen storage are part of the same adaptive strategy. Selection pressure is expected to differ at opposite ends of the clines. At high latitudes, selection onD. melanogaster would favour high larval growth rate at low temperatures, and resource storage in adults to survive winter. At low latitudes selection would favour lower larval critical size to survive crowding, and increased male activity leading to high male reproductive success. Studies of the insulin-signalling pathway inD. melanogaster point to the involvement of this pathway in metabolism and adult body size. The genes involved in the insulin-signalling pathway are associated with common cosmopolitan inversions that show latitudinal clines. Each chromosome region connected with a large common cosmopolitan inversion possesses a gene of the insulin transmembrane complex, a gene of the intermediate pathway and a gene of the TOR branch. The hypothesis is presented that temperateD. melanogaster populations have a higher frequency of a ’thrifty’ genotype corresponding to high insulin level or high signal level, while tropical populations possess a more ’spendthrift’ genotype corresponding to low insulin or low signal level.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.