• Issue front cover thumbnail

      Volume 125, Issue 2

      March 14,   pages  1-342

    • Retrieval of humidity and temperature profiles over the oceans from INSAT 3D satellite radiances

      C Krishnamoorthy Deo Kumar C Balaji

      More Details Abstract Fulltext PDF

      In this study, retrieval of temperature and humidity profiles of atmosphere from INSAT 3D-observed radiances has been accomplished. As the first step, a fast forward radiative transfer model using an Artificial neural network has been developed and it was proven to be highly effective, giving a correlationcoefficient of 0.97. In order to develop this, a diverse set of physics-based clear sky profiles of pressure (P), temperature (T) and specific humidity (q) has been developed. The developed database was further used for geophysical retrieval experiments in two different frameworks, namely, an ANN and Bayesianestimation. The neural network retrievals were performed for three different cases, viz., temperature only retrieval, humidity only retrieval and combined retrieval. The temperature/humidity only ANN retrievals were found superior to combined retrieval using an ANN. Furthermore, Bayesian estimation showed superior results when compared with the combined ANN retrievals.

    • Seasonal forecasting of tropical cyclogenesis over the North Indian Ocean

      D R Pattanaik M Mohapatra

      More Details Abstract Fulltext PDF

      Over the North Indian Ocean (NIO) and particularly over the Bay of Bengal (BoB), the post-monsoon season from October to December (OND) are known to produce tropical cyclones, which cause damage to life and property over India and many neighbouring countries. The variability of frequency of cyclonicdisturbances (CDs) during OND season is found to be associated with variability of previous large-scale features during monsoon season from June to September, which is used to develop seasonal forecast model of CDs frequency over the BoB and NIO based on principal component regression (PCR). Sixdynamical/thermodynamical parameters during previous June–August, viz., (i) sea surface temperature (SST) over the equatorial central Pacific, (ii) sea level pressure (SLP) over the southeastern equatorial Indian Ocean, (iii) meridional wind over the eastern equatorial Indian Ocean at 850 hPa, (iv) strength ofupper level easterly, (v) strength of monsoon westerly over North Indian Ocean at 850 hPa, and (vi) SST over the northwest Pacific having significant and stable relationship with CDs over BoB in subsequent OND season are used in PCR model for a training period of 40 years (1971–2010) and the latest four years (2011–2014) are used for validation. The PCR model indicates highly significant correlation coefficient of 0.77 (0.76) between forecast and observed frequency of CD over the BoB (NIO) for the whole period of 44 years and is associated with the root mean square error and mean absolute error ≤ 1 CD. With respect to the category forecast of CD frequency over BoB and NIO, the Hit score is found to be about 63% and the Relative Operating Curves (ROC) for above and below normal forecast is found to be having much better forecast skill than the climatology. The PCR model performs very well, particularly for the above and below normal CD year over the BoB and the NIO, during the test period from 2011 to 2014.

    • Structural mapping of Chikotra River basin in the Deccan Volcanic Province of Maharashtra, India from ground magnetic data

      S P Anand Vinit C Erram J D Patil N J Pawar Gautam Gupta R A Suryavanshi

      More Details Abstract Fulltext PDF

      Ground magnetic data collected over Chikotra River in the peripheral region of Deccan Volcanic Province (DVP) of Maharashtra located in Kolhapur district was analysed to throw light on the structural pattern and distribution of magnetic sources within the basin. In order to isolate the magnetic anomalies showing varying trend and amplitude, several transformation operations including wavelength filtering, and upward continuation has been carried out on the reduced to pole anomaly map. Qualitative interpretation of these products help identify the distribution of magnetic sources, viz., the Deccan basalts, dolerite intrusives and older greenstone and schist belts in the subsurface. Present study suggests that the Chikotra basin is composed of three structural units; a NE–SW unit superposed on deeper NW–SE unit with randomly distributed trap flows on the surface. One of the major outcome of the present study is the delineation of almost 900-m thick Proterozoic Kaladgi sediments below the Deccan trap flows. The NE–SW magnetic sources may probably represent intrusives into the Kaladgi sediments, while the deeper NW–SE trends are interpreted as the northward extension of the Dharwars, underneath theDeccan lava flows, that forms the basement for the deposition of Kaladgi sediments.

    • Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing

      G Maheswaran A Geetha Selvarani K Elangovan

      More Details Abstract Fulltext PDF

      Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resourcepotential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) andfuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.

    • Evaluation of soft sediment deformation structures along the Fethiye–Burdur Fault Zone, SW Turkey

      Mehmet Ozcelik

      More Details Abstract Fulltext PDF

      Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sitesin lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptuniandykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitationalinstabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.

    • Magnetic anomalies over the Andaman Islands and their geological significance

      P B V Subba Rao M Radhakrishna K Haripriya B Someswara Rao D Chandrasekharam

      More Details Abstract Fulltext PDF

      The Andaman Islands form part of the outer-arc accretionary sedimentary complex belonging to the Andaman–Sumatra active subduction zone. The islands are characterized by thick cover of Neogene sediments along with exposed ophiolite rocks at few places. A regional magnetic survey was carriedout for the first time over the Andaman Islands with a view to understand the correlation of anomaly signatures with surface geology of the islands. The residual total field magnetic anomaly maps have revealed distinct magnetic anomalies having intermediate to high amplitude magnetic signatures andcorrelate with the areas over/close to the exposed ophiolite rocks along the east coast of north, middle and the south Andaman Islands. The 2D modelling of magnetic anomalies along selected E–W profiles across the islands indicate that the ophiolite bodies extend to a depth of about 5–8 km and spatiallycorrelate with the mapped fault/thrust zones.

    • Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria

      I A Oha K M Onuoha A N Nwegbu A U Abba

      More Details Abstract Fulltext PDF

      High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features. Enhancement techniques applied include, reduction to pole/equator (RTP/RTE), first and second vertical derivatives, horizontal gradients and analytic signal. Results from these procedures show that at least 40% of the sedimentary basin contain shallow (<200 m) magmatic bodies, which in most cases are intermediate to mafic intrusive and hyperbysal rocks, and may occur as sills, dikes or batholiths. Magnetic lineaments with a predominant NE–SW trend appear to be more densely distributed around the basement rocks of the Oban Hills and metamorphosed rocks around the Workum Hills. 3D standard Euler deconvolution and Source Parameter Imaging (SPITM) techniques were employed for depth estimation. Results from the two methods show similar depth estimates. The maximum depth to basement values for 3D Euler and SPI are 4.40 and 4.85 km with mean depths of 0.42 and 0.37 km, respectively. Results of 2D modelling of magnetic profiles drawn perpendicular tomajor anomalies in the study area reveal the existence of deep seated faults which may have controlled the emplacement of intrusive bodies in the basin. The abundance of intrusive bodies in the study area renders this part of the southern Nigerian sedimentary basins unattractive for petroleum exploration.However, the area possesses high potential for large accumulation of base metal mineralization.

    • Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development

      Seyyed Saeed Ghannadpour Ardeshir Hezarkhani

      More Details Abstract Fulltext PDF

      The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the twoexample tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover,results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of x + n × s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.

    • Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau

      Hewen Niu Yuanqing He Shichang Kang Xixi Lu Xiaoyi Shi Shijin Wang

      More Details Abstract Fulltext PDF

      The snow and ice in Mt. Yulong offer a unique opportunity to investigate changes in climate and large scale atmospheric circulations over Asia. During February and April 2012, surface snow samples were collected from the Baishui Glacier No. 1 at different altitudes along the eastern slope of Mt. Yulong.Two snowpits were also excavated from Mt. Yulong at altitudes of 4780 and 4730 m a.s.l. in February 2012. The concentrations of inorganic ions were higher at an elevation of 4506 m a.s.l. in the glacier with significant contribution of anthropogenic (mainly NH$^+$ $_4$ , SO$^2−$ $_4$ , NO$^−$ $_3$) and crustal (mainly Ca$^2+$)constituents. Concentration of HCOO$^−$ in surface snow exhibited large variability, ranging from 0.04 to 6.8 μeq L$_−1$, attributed to dominant contribution from biomass burning emissions. Ion balance (ΔC) and Na$^+$/Cl$_−$ calculations indicated an excess of cations (particularly higher Ca2+ concentrations) and Cl− in snow, considering the sea-salt ratio, respectively. Monsoon season (June–September) ion concentrations in snowpit samples were generally two-fold lower than in other seasons. Principal component analysis was used to identify different sources of ions. Three main factors, accounting for more than 80% of the total variance, were related to different sources, including agricultural activities, biomass burning, and crustal aerosols.

    • Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China

      Jun Yin Denghua Yan Zhiyong Yang Zhe Yuan Yong Yuan Cheng Zhang

      More Details Abstract Fulltext PDF

      Based on the national precipitation dataset (0.5$^◦$ × 0.5$^◦$) 1961–2011, published by the National Meteorological Information Center of China and the five Global Climate Models provided by ISI-MIP, annual maximum precipitation for 1 day, 3 days and 7 days could be calculated. Extreme precipitation was fitted via Generalized Extreme Value (GEV) distribution to explore the changes of extreme precipitation with the return period of 20 years and 50 years during 1961–2000 and 2001–2050. Based on this, extreme precipitation projection in Huang-Huai-Hai region was done. The results showed that the five Global Climate Models could simulate the statistical features of extreme precipitation quite well, in which IPSL-CM5A-LR has the highest precision. Simulation of IPSL-CM5A-LR indicates that precipitation with the return period of 20 years and 50 years in the middle reaches of the Yellow River, middle and lower reaches of Huaihe River and plain area of the southern Haihe River will increase considerably in the future. Extreme precipitation in some of the places will even increase by more than 30%, which means that these places will face larger flood risk and their capacity to respond to flood disasters should be improved.

    • Characteristics of extreme dust events observed over two urban areas in Iran

      Abbas-Ali A Bidokhti Maryam Gharaylou Nafiseh Pegahfar Samaneh Sabetghadam Maryam Rezazadeh

      More Details Abstract Fulltext PDF

      Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity islow in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

    • 2D numerical modelling of meandering channel formation

      Y Xiao G Zhou F S Yang

      More Details Abstract Fulltext PDF

      A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-loadtransport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numericalpredictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under differentscenarios and improve understanding of patterning processes.

    • River catchment rainfall series analysis using additive Holt–Winters method

      Yan Jun Puah Yuk Feng Huang Kuan Chin Chua Teang Shui Lee

      More Details Abstract Fulltext PDF

      Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfalltrends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt–Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10%missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010–2012. Most of the forecasts are acceptable.

    • Tectonic evolution of Tarim basin in Cambrian–Ordovician and its implication for reservoir development, NW China

      Yu Bingsong Ruan Zhuang Zhang Cong Pan Yinglu Lin Changsong Wang Lidong

      More Details Abstract Fulltext PDF

      In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin’s inside sedimentary response to the Eopaleozoicregional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energyreef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

    • Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

      D Twinkle G Srinivasa Rao M Radhakrishna K S R Murthy

      More Details Abstract Fulltext PDF

      The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.