• Volume 121, Issue 2

      April 2012,   pages  263-557

    • Impact of continental meteorology and atmospheric circulation in the modulation of Aerosol Optical Depth over the Arabian Sea

      Sandhya K Nair S Sijikumar S S Prijith

      More Details Abstract Fulltext PDF

      Time series analysis of Aerosol Optical Depth (AOD) derived from NOAA-AVHRR data during the period 1996–1999 and the MODIS data during 2000–2009 over the Arabian Sea revealed a systematic biennial variability in the high AOD during summer months. The variability is more prominent over the northern and central parts of the Arabian Sea and became less significant towards southern latitudes. The possible mechanisms for these are examined by estimating the source strength over coastal Arabia and AOD flow rate through the western boundary of the Arabian Sea. Both these show clear signatures of biennial variability with same phase as AOD for most of the years. This result indicates that the observed biennial variability in AOD is likely to be the outcome of combined effects of biennial variability in wind generated sea-salt aerosols and dust transported from Arabia.

    • Development of multimodel ensemble based district level medium range rainfall forecast system for Indian region

      S K Roy Bhowmik V R Durai

      More Details Abstract Fulltext PDF

      India Meteorological Department has implemented district level medium range rainfall forecast system applying multimodel ensemble technique, making use of model outputs of state-of-the-art global models from the five leading global NWP centres. The pre-assigned grid point weights on the basis of anomaly correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of $0.25° × 0.25° utilizing two season datasets (1 June–30 September, 2007 and 2008) and the multimodel ensemble forecasts (day-1 to day-5 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district, taking the average value of all grid points falling in a particular district. In this paper, we describe the development strategy of the technique and performance skill of the system during summer monsoon 2009. The study demonstrates the potential of the system for improving rainfall forecasts at five days time scale over Indian region. Districtwise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most states of the country, particularly over the states where the monsoon systems are more dominant.

    • Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM

      Md Mizanur Rahman Md Nazrul Islam Ahsan Uddin Ahmed F Georgi

      More Details Abstract Fulltext PDF

      Regional Climate Model of version 3 (RegCM3) was driven with Emissions Scenarios A2 of ECHAM4 at 0.54° × 0.54° horizontal grid resolution in two parameterizations: Grell scheme with Arakawa–Schubert (GAS) and Fritch–Chappell (GFC) assumptions. The simulated rainfall and mean surface air temperature were calibrated and validated against ground-based observed data in Bangladesh during the period 1961–1990. The Climate Research Unit (CRU) data is also used for understanding the model performance. Better performance of RegCM3 obtained through validation process, made it confident in utilizing it in rainfall and temperature projection for Bangladesh in the middle of 21st century. Rainfall and mean surface air temperature projection for Bangladesh is experimentally obtained for 2050 and 2060. This work discloses that simulated rainfall and temperature are not directly useful in application-oriented tasks. However, after calibration and validation, reasonable performance can be obtained in estimating seasonal and annual rainfall, and mean surface air temperature in Bangladesh. The projected change of rainfall for Bangladesh is about +35% for monsoon season (JJAS), −67% for pre-monsoon (MAM), −12% for post-monsoon (ON) and 107% for winter (DJF) for 2050. On an average, rainfall may be less by more than 50% for all seasons for the year 2060. Similarly, change of mean surface air temperature in different months is projected about 0.5°–2.1°C and 0.9°–3.5°C for the year 2050 and 2060, respectively.

    • The diagnosis of severe thunderstorms with high-resolution WRF model

      A J Litta U C Mohanty Sumam Mary Idicula

      More Details Abstract Fulltext PDF

      Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region.

    • The performance of different cumulus parameterization schemes in simulating the 2006/2007 southern peninsular Malaysia heavy rainfall episodes

      Wan Ahmad Ardie Khai Shen Sow Fredolin T Tangang Abdul Ghapor Hussin Mastura Mahmud Liew Juneng

      More Details Abstract Fulltext PDF

      The performance of four different cumulus parameterization schemes (CPS) in the Weather Research and Forecasting (WRF) model for simulating three heavy rainfall episodes over the southern peninsular Malaysia during the winter monsoon of 2006/2007 were examined. The modelled rainfall was compared with the 3-hourly satellite observation and objectively scored using a verification technique called the acuity–fidelity. The technique is based on minimization of a cost function that is calculated from four parameters taking into account errors in distance, time, intensity, and missed events. All simulations were made for 72 hours for the three episodes starting at 1200 UTC 17 December 2006, 1200 UTC 24 December 2006 and 1200 UTC 11 January 2007, respectively. The four different CPSs used are the new Kain–Fritsch scheme (KF2), the Betts–Miller–Janjic scheme (BMJ), the Grell–Devenyi ensemble scheme (GD) and the older Kain–Fritsch scheme (KF1). While the BMJ scheme shows some success in the second and third episodes, it shows high location errors in the first episode, leading to high acuity errors. The GD, KF2 and KF1 schemes performed poorly, although both the BMJ and GD schemes simulated the observed drastic increase of rainfall at 2100 UTC 18 December 2006 during the first episode. Overall, the KF1 and KF2 schemes produced positive biases in terms of coverage, while the GD scheme showed persistent location bias, producing a scattered line of precipitation over the eastern coastline of peninsular Malaysia. Although the BMJ scheme has better results, its poor performance for the first episode suggests that suitability of CPS may be case dependent.

    • Wintertime land surface characteristics in climatic simulations over the western Himalayas

      A P Dimri

      More Details Abstract Fulltext PDF

      Wintertime regional climate studies over the western Himalayas with ICTP-RegCM3 simulations through 22 years has shown systematic biases in precipitation and temperature fields. The model simulated precipitation shows systematically wet bias. In surface temperature simulations, positive and negative biases of 2°–4°C occurred. Experiment without (CONT) and with subBATS (SUB) shows that later scheme performs better, especially for precipitation. Apart from the role of topography and model internal variability, land surface characteristics also have profound impact on these climatic variables. Therefore, in the present study, impacts of land surface characteristics are investigated through cool/wet and warm/dry winter climate by CONT and SUB simulations to assess systematic biases. Since SUB experiment uses detailed land-use classification, systematic positive biases in temperature over higher elevation peaks are markedly reduced. The change has shown reduced excessive precipitation as well. Most of the surface characteristics show that major interplay between topography and western disturbances (WDs) takes place along the foothills rather than over the higher peaks of the western Himalayas.

    • Ionospheric irregularities at Antarctic using GPS measurements

      Sunita Tiwari Amit Jain Shivalika Sarkar Sudhir Jain A K Gwal

      More Details Abstract Fulltext PDF

      The purpose of this work is to study the behaviour of the ionospheric scintillation at high latitude during geomagnetically quiet and disturbed conditions which is one of the most relevant themes in the space weather studies. Scintillation is a major problem in navigation application using GPS and in satellite communication at high latitudes. Severe amplitude fading and strong scintillation affect the reliability of GPS navigational system and satellite communication. To study the effects of the ionospheric scintillations, GPS receiver installed at Antarctic station Maitri (Geog. 70.76°S; 11.74°E) was used. The data is collected by using GISTM 4004A, NOVATEL’S GPS receiver during March 2008. Studies show that percentage occurrence of phase scintillation is well correlated with geomagnetic activity during the observation period. The result also shows that very intense scintillations can degrade GPS based location determination due to loss of lock of satellites. These findings indicate that the dependence of scintillations and irregularity occurrence on geomagnetic activity is associated with the magnetic local time (MLT). Large number of patches are reported and their activity depends on the magnetic activity index.

    • Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India

      M Rajeevan A Madhulatha M Rajasekhar Jyoti Bhate Amit Kesarkar B V Appa Rao

      More Details Abstract Fulltext PDF

      A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors are derived from a numerical weather prediction model. In the present study, we have developed the statistical model based on Binary Logistic Regression technique. For developing the statistical model, 115 cases of lightning that occurred over the south-east Indian region during the period 2006–2009 were considered. The probability of lightning (yes or no) occurring during the 12-hour period 0900–2100 UTC over the region was considered as the predictand. The thermodynamic and dynamic variables derived from the NCEP Final Analysis were used as the predictors. A three-stage strategy based on Spearman Rank Correlation, Cumulative Probability Distribution and Principal Component Analysis was used to objectively select the model predictors from a pool of 61 potential predictors considered for the analysis. The final list of six predictors used in the model consists of the parameters representing atmospheric instability, total moisture content in the atmosphere, low level moisture convergence and lower tropospheric temperature advection. For the independent verifications, the probabilistic model was tested for 92 days during the months of May, June and August 2010. The six predictors were derived from the 24-h predictions using a high resolution Weather Research and Forecasting model initialized with 00 UTC conditions. During the independent period, the probabilistic model showed a probability of detection of 77% with a false alarm rate of 35%. The Brier Skill Score during the independent period was 0.233, suggesting that the prediction scheme is skillful in predicting the lightning probability over the south-east region with a reasonable accuracy.

    • Surface ozone scenario at Pune and Delhi during the decade of 1990s

      Kaushar Ali S R Inamdar G Beig S Ghude Sunil Peshin

      More Details Abstract Fulltext PDF

      Data on surface ozone concentration compiled for a 10-year period from 1990 to 1999 for Pune and Delhi are analyzed in terms of its frequency distribution, annual trend, diurnal variation and its relation with various meteorological and chemical parameters. It is found that the surface ozone concentration range showing highest frequency of occurrence at Pune is 0–5 ppb during winter and post-monsoon seasons and 15–20 ppb and 5–10 ppb during summer and monsoon seasons, respectively. It is 0–5 ppb at Delhi during all the seasons. The surface ozone concentration has shown a decreasing trend at Pune during the observational period with an average rate of decrease of 1.54 ppb/year. On the other hand, there is no trend whatsoever in the variation of surface ozone concentration at Delhi. Minimum value of surface ozone occurs before sunrise and maximum in the afternoon hours. Regression analyses of surface ozone with maximum temperature (𝑟 = 0.46 for Pune and 0.51 for Delhi, significant at more than 0.1%) and NO2 at respective locations indicate that surface ozone at these locations is mainly produced by photochemistry. Transport mechanism is also understood to have contributed significantly to the total concentration of ozone. Inverse relationship obtained between surface ozone concentration and relative humidity indicates that major photochemical paths for removal of ozone become effective when humidity increases at these locations.

    • Wave hindcast experiments in the Indian Ocean using MIKE 21 SW model

      P G Remya Raj Kumar Sujit Basu Abhijit Sarkar

      More Details Abstract Fulltext PDF

      Wave prediction and hindcast studies are important in ocean engineering, coastal infrastructure development and management. In view of sparse and infrequent in-situ observations, model derived hindcast wave data can be used for the assessment of wave climate in offshore and coastal areas. In the present study, MIKE 21 SW Model has been used to carry out wave hindcast experiments in the Indian Ocean. Model runs have been made for the year 2005 using QuickSCAT scatterometer winds blended with ECMWF model winds. In order to study the impact of southern ocean swells, the model has been run in two different domains, with the southern boundary being shifted far south for the Domain 60S model. The model simulated wave parameters have been validated by comparing with buoy and altimeter data and various statistical yardsticks have been employed to quantify the validation. Possible reason for the poorer performance of the model in the Arabian Sea has also been pointed out.

    • Variations in nearshore waves along Karnataka, west coast of India

      V Sanil Kumar Glejin Johnson G Udhaba Dora Sajiv Philip Chempalayi Jai Singh P Pednekar

      More Details Abstract Fulltext PDF

      Wind wave spectra were recorded simultaneously at three shallow (water depth 7–9 m) locations (Malpe, Honnavar and Karwar) along the 200 km stretch of the state of Karnataka in 2009 during 27 April–24 May (representing conditions prior to onset of the Indian summer monsoon), 12 June–8 July (monsoon), and 1–31 October (post-monsoon). Each spectrum was based on data recorded for half an hour using a waverider buoy. The paper describes characteristics of the spectra and the wave parameters derived from the spectra. Both reveal the dramatic changes that occur in the wave field due to the summer monsoon. The changes were virtually identical at all the three locations suggesting that the wave characteristics described here are representative of the conditions that exist along the coast of Karnataka State, west coast of India.

    • Lower Oligocene bivalves of Ramanian Stage from Kachchh, Gujarat, India

      R P Kachhara R L Jodhawat K Bigyapati Devi

      More Details Abstract Fulltext PDF

      Marine Oligocene sequences in India outcrop only in western part of Kachchh. Earlier researchers have recognized the Oligocene strata under the Nari Series (Nagappa 1959; Chatterji and Mathur 1966). The Nari Series has a type area in Pakistan. It has two subdivisions – the Lower Nari (Lower Oligocene) and the Upper Nari (Upper Oligocene). It seems that there is no valid proof about the age of the Lower Nari due to lack of proper fauna (Eames 1975), and according to Pascoe (1962), the Upper Nari slightly transgress into Aquitanian (Lower Miocene), therefore, one has to be very cautious. Biswas and Raju (1971) reclassified the Oligocene strata of Kachchh and lithostratigraphically clubbed them as the Maniyara Fort Formation with type section along the Bermoti stream. This Formation has four members. The lower three members correspond to the Ramanian Stage (Lower Oligocene, Biswas 1971, 1973) while the uppermost to the Waiorian Stage (Upper Oligocene, Biswas 1965, 1971, 1973). The Ramanian Stage is characterized by large forams especially Nummulites fichteli, Nummulites fichteli intermedius, Lepidocyclina (Eulepidina) dialata and Operculina sp. Several ostracods are also known to occur. Megafauna include bivalves, gastropods, echinoids, corals, mammals and reptiles. Concerning bivalves earlier researchers have recorded a few taxa namely Trisidos semitorta (Lamarck), Cubitostrea angulata (J de C Sowerby), Pecten (Amussiopecten) labadyei d’Archiac and Haime, Periglypta puerpera (Linne’) var. aglaurae Brongniart, Ostrea fraasi Mayer Eymer and listed Pecten laevicostatus J de C Sowerby, Callista pseudoumbonella Vredenburg and Clementia papyracea (Gray) from Kachchh as against overall 42 forms from the Nari Series as a whole (Vredenburg 1928). This tempted us to make an attempt to collect bivalve fauna systematically which are occurring prolifically in the Ramanian Stage. In the present work, for this purpose, sections are worked out around Lakhpat (23° 50′N; 68° 47′′E), Maniyara Fort (23° 28′ 05′′N; 68° 37′E) Rakhdi Dam (23° 27′ 26′′N; 68° 40′ 10′′E) and Waior (23°25′ 05′′N;: 68° 41′ 37′′E) with a view to highlight the entombed bivalve taxa. Authors have encountered 53 species of which 23 are restricted to the Ramanian Stage.

    • Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications

      A P Singh O P Mishra Dinesh Kumar Santosh Kumar R B S Yadav

      More Details Abstract Fulltext PDF

      We analyzed 3365 relocated aftershocks with magnitude of completeness (Mc) ≥ 1.7 that occurred in the Kachchh Rift Basin (KRB) between August 2006 and December 2010. The analysis of the new aftershock catalogue has led to improved understanding of the subsurface structure and of the aftershock behaviour. We characterized aftershock behaviour in terms of 𝑎-value, 𝑏-value, spatial fractal dimension ($D_s$), and slip ratio (ratio of the slip that occurred on the primary fault and that of the total slip). The estimated 𝑏-value is 1.05, which indicates that the earthquake occurred due to active tectonics in the region. The three dimensional 𝑏-value mapping shows that a high 𝑏-value region is sandwiched around the 2001 Bhuj mainshock hypocenter at depths of 20–25 km between two low 𝑏-value zones above and below this depth range. The $D_s$-value was estimated from the double-logarithmic plot of the correlation integral and distance between hypocenters, and is found to be 2.64 ± 0.01, which indicates random spatial distribution beneath the source zone in a two-dimensional plane associated with fluid-filled fractures. A slip ratio of about 0.23 reveals that more slip occurred on secondary fault systems in and around the 2001 Bhuj earhquake (Mw 7.6) source zone in KRB.

    • Analysis of lineament swarms in a Precambrian metamorphic rocks in India

      Tapas Acharya Sukumar Basu Mallik

      More Details Abstract Fulltext PDF

      Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian metamorphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the major lineament and fracture trends are oriented along EW and NS directions respectively, thus failing to provide any correlation between them. The application of domain-based filtering techniques identifies a highly predominant fracture-correlated lineaments in mica schist constituting the EW trending shear zone in the area. This correlation is not evident in the areas north and south of the shear zone, where the lineaments are consistently oriented along the foliation planes of the rocks and are designated as ‘foliation correlated’. The present analysis indicates that the fracture frequency and the strain history may have played significant roles for the formation of fracture-correlated lineaments in the metamorphic terrain.

    • Statistical models of interoccurrence times of Iranian earthquakes on the basis of information criteria

      Nadia Tahernia Morteza Khodabin Noorbakhsh Mirzaei Morteza Eskandari-Ghadi

      More Details Abstract Fulltext PDF

      By analyzing the seismic catalogue of Iran, the probability distributions of interoccurrence times of earthquakes were investigated for different seismotectonic settings. Several probability distributions were applied to data from major seismotectonic provinces in different cut-off magnitudes and the distribution parameters were determined through the method of maximum likelihood. With the help of goodness-of-fit tests (AIC and BIC criteria based on information theory, Kolmogorov–Smirnov test) and the coefficient of determination, we have found that the gamma statistics and generalized normal statistics coexist in interoccurrence time statistics. Our results imply that a transition from a generalized normal regime to a gamma regime occurs if the threshold magnitude in certain seismotectonic regions (Alborz–Azarbayejan, Zagros, and Central-East Iran) is changed.

    • A study on seismicity and seismic hazard for Karnataka State

      T G Sitharam Naveen James K S Vipin K Ganesha Raj

      More Details Abstract Fulltext PDF

      This paper presents a detailed study on the seismic pattern of the state of Karnataka and also quantifies the seismic hazard for the entire state. In the present work, historical and instrumental seismicity data for Karnataka (within 300 km from Karnataka political boundary) were compiled and hazard analysis was done based on this data. Geographically, Karnataka forms a part of peninsular India which is tectonically identified as an intraplate region of Indian plate. Due to the convergent movement of the Indian plate with the Eurasian plate, movements are occurring along major intraplate faults resulting in seismic activity of the region and hence the hazard assessment of this region is very important. Apart from referring to seismotectonic atlas for identifying faults and fractures, major lineaments in the study area were also mapped using satellite data. The earthquake events reported by various national and international agencies were collected until 2009. Declustering of earthquake events was done to remove foreshocks and aftershocks. Seismic hazard analysis was done for the state of Karnataka using both deterministic and probabilistic approaches incorporating logic tree methodology. The peak ground acceleration (PGA) at rock level was evaluated for the entire state considering a grid size of 0.05° × 0.05°. The attenuation relations proposed for stable continental shield region were used in evaluating the seismic hazard with appropriate weightage factors. Response spectra at rock level for important Tier II cities and Bangalore were evaluated. The contour maps showing the spatial variation of PGA values at bedrock are presented in this work.

    • Identifying key processes in the hydrochemistry of a basin through the combined use of factor and regression models

      Sandow Mark Yidana Bruce Banoeng-Yakubo Patrick Asamoah Sakyi

      More Details Abstract Fulltext PDF

      An innovative technique of measuring the intensities of major sources of variation in the hydrochemistry of (ground) water in a basin has been developed. This technique, which is based on the combination of R-mode factor and multiple regression analyses, can be used to measure the degrees of influence of the major sources of variation in the hydrochemistry without measuring the concentrations of the entire set of physico-chemical parameters which are often used to characterize water systems. R-mode factor analysis was applied to the data of 13 physico-chemical parameters and 50 samples in order to determine the major sources of variation in the hydrochemistry of some aquifers in the western region of Ghana. In this study, three sources of variation in the hydrochemistry were distinguished: the dissolution of chlorides and sulfates of the major cations, carbonate mineral dissolution, and silicate mineral weathering. Two key parameters were identified with each of the processes and multiple regression models were developed for each process. These models were tested and found to predict these processes quite accurately, and can be applied anywhere within the terrain. This technique can be reliably applied in areas where logistical constraints limit water sampling for whole basin hydrochemical characterization. Q-mode hierarchical cluster analysis (HCA) applied to the data revealed three major groundwater associations distinguished on the basis of the major causes of variation in the hydrochemistry. The three groundwater types represent Na–HCO3, Ca–HCO3, and Na–Cl groundwater types. Silicate stability diagrams suggest that all these groundwater types are mainly stable in the kaolinite and montmorillonite fields suggesting moderately restricted flow conditions.

    • Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: Implications for their emplacement in a plate margin tectonic environment

      Rajesh K Srivastava Anup K Sinha Suresh Kumar

      More Details Abstract Fulltext PDF

      A number of mafic intrusive bodies (mostly dykes) are exposed in the Chhotanagpur Gneissic Terrain (CGT). Most dykes trend in ENE–WSW to E–W following major structural trends of the region. These metabasite dykes show granoblastic to grano-nematoblastic textures and contain hornblende, plagioclase, chlorite, quartz and epidote which suggest their metamorphism under amphibolite grade P–T conditions. Although no radiometric age is available for the metabasite dykes, field relationships with host rock and available geochronology on granitoids suggest their emplacement during Mesoproterozoic. Geochemical characteristics of these dykes classify them as low-K tholeiite to medium-K calcalkaline type. At least two types of metabasite dykes are recognized on the basis of their HFSE contents; one group shows entirely calc-alkaline nature, whereas the other group has rocks of tholeiite-calc-alkaline series. High Mg#observed in a number of samples indicates their derivation from primary melt. Multielement spidergrams and rare-earth element patterns observed in these samples also corroborate their derivation from different magma batches. Trace element patterns observed for Nb–Ta, Hf–Zr, Sr and Y suggesting involvement of subduction related processes in the genesis of CGT metabasite dykes. Perceived geochemical characteristics suggest that metamorphism did not affect much on the chemistry of metabasites but source region, responsible for the generation of CGT metabasites, was possibly modified during subduction process. This study suggests that magma generated in a destructive plate setting fed the Mesoproterozoic mafic dykes of the CGT.

    • Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

      P V Nageswara Rao P C Swaroop Syed Karimulla

      More Details Abstract Fulltext PDF

      This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110–1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063–1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900–1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748–898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe–Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900–1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48–10.3) and extremely reducing conditions for middle (12.1–15.5) and upper basalt (12.4–15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3+MgO) data plots for present basalts suggested the lower basaltic flow is formed at higher temperatures while the middle and upper basalt flows at medium to lower temperatures. The lower basalt flow is represented by higher temperatures which shows high modal values of opaques and glass whereas the medium to lower temperatures of middle and upper flow are caused by vesicular nature which contain larger content of gases and humid to semi-arid conditions during cooling.

    • Stratigraphic status of coal horizon in Tatapani–Ramkola Coalfield, Chhattisgarh, India

      Archana Tripathi Vijaya Srikanta Murthy B Chakarborty D K Das

      More Details Abstract Fulltext PDF

      The palynostratigraphic data given here are based on the explored borecores (TRBD-2, TRBD-3 and TROD-1), by Geological Survey of India. The Permian strata worked-out is about 1174.00 m thick and comprises from base to top – Talchir, Barakar and Barren Measures formations. The palynological content enables delimitation of five palynological assemblages. (i) Scheuringipollenites barakarensis, (ii) Faunipollenites varius, (iii) Gondisporites raniganjensis, (iv) Densipollenites magnicorpus, and (v) Krempipollenites indicus in ascending order from the subsuface rock strata. The lithologically identified strata Talchir Formation in borecores TRBD-2 and TRBD-3 is palynologically dated late Early Permian in having the Scheuringipollenites barakarensis and the Faunipollenites varius palynozones. Subsequently, the part of Barakar strata in these borecores corroborates with Barakar Formation. In borecore TRBD-3, the Barren Measures rocks do not match with the palynological dates, and are affiliated with the palynoflora of the Raniganj Formation. In TROD-1, the strata identified as Barakar Formation is dated Late Permian in having Gondisporites ranigangensis Palynozone; while that of Barren Measures Formation is palynologically dated Early Triassic having Krempipollenites indicus Palynozone. The palynology has helped in the precise dating of the Lower Gondwana succession of Odari and Bartikhurd blocks in Tatapani–Ramkola Coalfield of South Rewa Gondwana Basin.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.