• Volume 121, Issue 1

      February 2012,   pages  1-262

    • Petrotectonic framework of granulites from northern part of Chilka Lake area, Eastern Ghats Belt, India: Compressional vis-à-vis transpressional tectonics

      Kaushik Das Sankar Bose Subrata Karmakar Supriya Chakraborty

      More Details Abstract Fulltext PDF

      Granulite-facies rocks occurring north-east of the Chilka Lake anothosite (Balugan Massif) show a complex metamorphic and deformation history. The M1$–$D1 stage is identified only through microscopic study by the presence of S1 internal foliation shown by the M1 assemblage sillimanite–quartz–plagioclase–biotite within garnet porphyroblasts of the aluminous granulites and this fabric is obliterated in outcrop to map-scale by subsequent deformations. S2 fabric was developed at peak metamorphic condition (M2$–$D2­) and is shown by gneissic banding present in all lithological units. S3 fabric was developed due to D3 deformation and it is tectonically transposed parallel to S2 regionally except at the hinge zone of the F3 folds. The transposed S2/S3 fabric is the regional characteristic structure of the area. The D4 event produced open upright F4 folds, but was weak enough to develop any penetrative foliation in the rocks except few spaced cleavages that developed in the quartzite/garnet–sillimanite gneiss. Petrological data suggest that the $M_{4}–D_{4}$ stage actually witnessed reactivation of the lower crust by late distinct tectonothermal event. Presence of transposed $S_{2}/S_{3}$ fabric within the anorthosite arguably suggests that the pluton was emplaced before or during the $M_{3}–D_{3}$ event. Field-based large-scale structural analyses and microfabric analyses of the granulites reveal that this terrain has been evolved through superposed folding events with two broadly perpendicular compression directions without any conclusive evidence for transpressional tectonics as argued by earlier workers. Tectonothermal history of these granulites spanning in Neoproterozoic time period is dominated by compressional tectonics with associated metamorphism at deep crust.

    • Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India

      Ranjit Das H R Wason M L Sharma

      More Details Abstract Fulltext PDF

      Northeast India region is one of the most seismically active areas in the world. Events data for the period 1897–2010, used in this study has been largely compiled from global ISC, NEIC and GCMT databases. Historical seismicity catalogue of Gupta et al (1986) and some events data from the bulletins of India Meteorological Department are also used. Orthogonal regression relations for conversion of body and surface wave magnitudes to 𝑀w,HRVD based on events data for the period 1978–2006 have been derived. An Orthogonal Standard Regression (OSR) relationship has also been obtained for scaling of intensity estimates to 𝑀_{w,NEIC} using 126 global intensity events with intensity VI or greater during the period 1975–2010.

      Magnitude of completeness and Gutenberg–Richter (GR) recurrence parameter values have been determined for the declustered homogenized catalogue pertaining to four different time periods namely, 1897–1963, 1964–1990, 1964–2000 and 1964–2010. The $M_c$ and ‘𝑏’ values are observed to decrease and increase, respectively, with addition of newer data with time. The study region has been subdivided into nine seismogenic zones keeping in view the spatial variations in earthquake occurrence and prevalent tectonics. $M_c$, ‘𝑏’ and ‘𝑎’ values have been estimated with respect to each zone, and the variations in the values of these parameters have been analysed.

    • Fluid–rock interaction across the South Tibetan Detachment, Garhwal Himalaya (India): Mineralogical and geochemical evidences

      Anubhooti Saxena Himanshu K Sachan Pulok K Mukherjee Dilip K Mukhopadhya

      More Details Abstract Fulltext PDF

      The Malari Leucogranite in the Garhwal Himalaya is cut across by a continental-scale normal fault system called the South Tibetan Detachment (STD). A mineralogical, geochemical and fluid inclusion study of samples from the fault zone of the Malari Granite was performed to reveal the imprints of fluid–rock interaction. Fluid inclusion assemblages observed in the alteration zone indicate the presence of NaCl-dominated aqueous fluids with varied salinity of 6 –16 wt.% of NaCl equivalent. Mineralogical changes include the alteration of feldspar to muscovite and muscovite to chlorite. This alteration took place at temperatures of 275°$–$335°C and pressures between 1.9 and 4.2 kbars as revealed by the application of chlorite thermometry, fluid isochores, and presence of K-feldspar+muscovite+chlorite+quartz mineral assemblage. Geochemical mass-balance estimates predict 32% volume loss during alteration. An estimated fluid/rock ratio of 82 is based on loss of silica during alteration, and reveals presence of a moderately low amount of fluid at the time of faulting.

      Results of fluid inclusion and alteration mineralogy indicate that the Malari Leucogranites were exhumed due to normal faulting along the STD and erosion from mid-crustal levels. Most of the leucogranites in the Himalayas occur along the STD and possibly a regional-scale fluid flow all along the STD might have caused similar alteration of leucogranites along this tectonic break. Regional fluid flow was probably concentrated along the STD and channelized through mesoscopic fractures, microcracks and grain boundaries.

    • A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

      M H Bagheripour I Shooshpasha M Afzalirad

      More Details Abstract Fulltext PDF

      Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction ($P_L$), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates $P_L$ and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

    • Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content

      S H R Sadeghi M Kiani Harchegani H A Younesi

      More Details Abstract Fulltext PDF

      This paper aims at assessing the feasibility of suspended sediment concentration (SSC) estimation by using predictor variables of heavy metal concentration (HMC, viz., iron, chromium, zinc and nickel) transported in solution and solid. The study was conducted in the Research and Educational Forest Watershed of the Tarbiat Modares University (Kojour) which comprises an area of ca. 50000 ha. For this study, suspended sediment samples were collected from the left bank of the Kojour River twice a week, as well as during runoff events from November 2007 to June 2008. The samples were then prepared through direct digestion and finally analyzed by atomic absorption spectrophotometry (AAS). The relationship between SSC and particle size distribution (PSD) were correlated with HMC by using bivariate and multivariate regression models. Proposed models were then selected based on statistical criteria. The results showed high correlation between dissolved and particulate chromium content with efficiency coefficients beyond 77% (𝑃 > 0.001). However, a lower relationship was found between SSC and nickel content. From these results, it is clearly shown that the HMC can practically be estimated by SSC in watersheds with different accuracy and vice versa. It is also understood that heavy metal pollution can be easily managed by controlling SSC.

    • Depositional environment and provenance of Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India

      Abhik Kundu Abdul Matin Malay Mukul

      More Details Abstract Fulltext PDF

      The frontal part of the active, wedge-shaped Indo-Eurasian collision boundary is defined by the Himalayan fold-and-thrust belt whose foreland basin accumulated sediments that eventually became part of the thrust belt and is presently exposed as the sedimentary rocks of the Siwalik Group. The rocks of the Siwalik Group have been extensively studied in the western and Nepal Himalaya and have been divided into the Lower, Middle and Upper Subgroups. In the Darjiling–Sikkim Himalaya, the Upper Siwalik sequence is not exposed and the Middle Siwalik Subgroup exposed in the Tista river valley of Darjiling Himalaya preserves a ∼325 m thick sequence of sandstone, conglomerate and shale. The Middle Siwalik section has been repeated by a number of north dipping thrusts. The sedimentary facies and facies associations within the lithostratigraphic column of the Middle Siwalik rocks show temporal repetition of sedimentary facies associations suggesting oscillation between proximal-, mid- and distal fan setups within a palaeo-alluvial fan depositional environment similar to the depositional setup of the Siwalik sediments in other parts of the Himalaya. These oscillations are probably due to a combination of foreland-ward movement of Himalayan thrusts, climatic variations and mountain-ward shift of fanapex due to erosion. The Middle Siwalik sediments were derived from Higher- and Lesser Himalayan rocks. Mineral characteristics and modal analysis suggest that sedimentation occurred in humid climatic conditions similar to the moist humid climate of the present day Eastern Himalaya.

    • Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India

      Sohini Ganguly Jyotisankar Ray Christian Koeberl Theodoros Ntaflos Mousumi Banerjee

      More Details Abstract Fulltext PDF

      Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four different sectors, viz., (i) Bargona–Gadarwara (BG) sector (ii) Shikarpur–Linga (SL) sector (iii) Arjunvari–Survir Hill (AS) sector and (iv) Kukrachiman–Morand Hill (KM) sector. A threetier classification scheme has been adopted for the characterization and classification of individual lava flows. Each lava flow consists of a Lower Colonnade Zone (LCZ) overlain by the Entablature Zone (EZ) and Upper Colonnade Zone (UCZ). The LCZ and UCZ grade into a distinct/indistinct Lower Vesicular Zone (LVZ) and Upper Vesicular Zone (UVZ), respectively. The LCZ and UCZ of the flows are characterized by columnar joints while the EZ is marked by multi-directional hackly jointing. The geometry of different joint patterns corresponds to different styles of cooling during solidification of lava flows. Detailed petrographic studies of the investigated lava flows reveal inequigranular phenocrystal basalts characterized by development of phenocrystal phases including plagioclase, clinopyroxene and olivine, whereas groundmass composition is marked by tiny plagioclase, clinopyroxene, opaque mineral and glass. Electron microprobe analyses indicate that the olivine has a wide range ∼Fo22 to Fo66 revealing a wide spectrum of compositional variation. Pyroxene compositions are distinctly designated as Quad pyroxenes. Phenocrystal pyroxenes are mostly diopsidic, while the groundmass pyroxenes mainly correspond to augite with a minor pigeonite component. Pyroxene phenocrysts are characterized by a prominent Tienrichment. Phenocrystal plagioclase grains are calcic (An52.7$–$An72.9), whereas groundmass plagioclase are relatively sodic (An39.2$–$An61.6). Groundmass opaque minerals are characteristically found to be Ti–magnetite/ilmenite/pyrophanite. Pyroxene thermometry reveals a temperature span of 850° to 1280°C for the studied lavas while olivine–clinopyroxene thermometry yields a temperature range from 1040°$–$1160°C. The variation of temperature for the lava flows is ascribed to their normal cooling history after eruption.

    • Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

      Fathy A Abdalla Traugott Scheytt

      More Details Abstract Fulltext PDF

      Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

    • Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers

      C K Chang H Md Azamathulla N A Zakaria A Ab Ghani

      More Details Abstract Fulltext PDF

      This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three Malaysian rivers namely Kurau, Langat and Muda. The results of present study are very promising: FFNN (𝑅^{2} = 0.958, RMSE = 0.0698), ANFIS (𝑅^{2} = 0.648, RMSE = 6.654), and GEP (𝑅^{2} = 0.97, RMSE = 0.057), which support the use of these intelligent techniques in the prediction of sediment loads in tropical rivers.

    • Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India

      Swati Dixit S K Bera

      More Details Abstract Fulltext PDF

      Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like Ludwigia octavalvis and Botryococcus. Later, fluvial activity was succeeded by the tropical tree savanna under cool and dry climate between 12,700 and 11,600 cal years BP corresponding to that of global Younger Dryas. Between 11,600 and 8310 cal years BP, relatively less cool and dry climate prevailed with inception of tropical mixed deciduous taxa like Shorea robusta and Lagerstroemia parviflora. This phase is further followed by a fluvial activity between 8310 and 7100 cal years BP as evidenced by trace values of pollen and spores. Fluvial activity was further succeeded by enrichment of tropical mixed deciduous forest under warm and humid climatic regime between 7100 and 1550 cal years BP which is well-matched with the peak period of the Holocene climatic optimum. However, during 1550–768 cal years BP, final settlement of tropical mixed deciduous forest occurred under increased warm and humid climate followed by deterioration in tropical mixed deciduous forest under warm and relatively dry climatic regime since 768 cal years BP onwards due to acceleration in human settlement as evidenced by Cerealia. Increase in Melastoma, Ziziphus and Areca catechu imply forest clearance at this phase. The occurrence of degraded pollen-spore along with adequate fungal elements especially, Xylaria, Nigrospora and Microthyriaceous fruiting body is suggestive of aerobic microbial digenesis of rich organic debris during sedimentation.

    • Geomorphological evidences of post-LGM glacial advancements in the Himalaya: A study from Chorabari Glacier, Garhwal Himalaya, India

      Manish Mehta Zahid Majeed D P Dobhal Pradeep Srivastava

      More Details Abstract Fulltext PDF

      Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating from the Mandakini river valley of the Garhwal Himalaya enabled identification of four major glacial events; Rambara Glacial Stage (RGS) (13 ± 2 ka), Ghindurpani Glacial Stage (GhGS) (9 ± 1 ka), Garuriya Glacial Stage (GGS) (7 ± 1 ka) and Kedarnath Glacial Stage (KGS) (5 ± 1 ka). RGS was the most extensive glaciation extending for ∼6 km down the valley from the present day snout and lowered to an altitude of 2800 m asl at Rambara covering around ∼31 km2 area of the Mandakini river valley. Compared to this, the other three glaciations (viz., GhGS, GGS and KGS) were of lower magnitudes terminating around ∼3000, ∼3300 and ∼3500 m asl, respectively. It was also observed that the mean equilibrium line altitude (ELA) during RGS was lowered to 4747 m asl compared to the present level of 5120 m asl. This implies an ELA depression of ∼373 m during the RGS which would correspond to a lowering of ∼2°C summer temperature during the RGS. The results are comparable to that of the adjacent western and central Himalaya implying a common forcing factor that we attribute to the insolation-driven monsoon precipitation in the western and central Himalaya.

    • Late Quaternary fine silt deposits of Jammu, NW Himalaya: Genesis and climatic significance

      Rajinder K Ganjoo Vinod Kumar

      More Details Abstract Fulltext PDF

      The fine silt deposits of Jammu (J & K State, India) stretch all along the Siwalik foothills from Jammu to the Potwar Plateau in Pakistan. The post-Siwalik deposits, first discussed by de Terra and Paterson (1939), are attributed to wind action. The deposits termed as ‘Potwar loessic silt’ comprising sandy silt are essentially of late Quaternary age (75–18 ka) and are re-looked herein from the point of view of genesis and climatic significance. The sorting, skewness and kurtosis parameters of fine silts of Jammu suggest fluvial environment of the deposits wherein the water budget fluctuated. The weak pedogenesis of fine silts at certain intervals corroborate to periods of less or no sedimentation. The bivariant plot studies further suggest fluvial environment of deposition for the fine silt at Jammu, with regular fluctuations in the budget of river water that was perhaps in consonance with oscillations in the climate of the region.

    • Pterospermumocarpon, a new malvalean fruit from the Sindhudurg Formation (Miocene) of Maharashtra, India, and its phytogeographical significance

      Rashmi Srivastava R K Saxena Gaurav Srivastava

      More Details Abstract Fulltext PDF

      Pterospermumocarpon (Type: P. kalviwadiensis), a new morphogenus of fossil fruits showing resemblance with fruits of extant Pterospermum Schreb. (Malvaceae s.l.), is described from the Sindhudurg Formation (Miocene) at the Kalviwadi Village, Sindhudurg District, Maharashtra, India. Diagnostic feature of the fossil taxon is the dehiscent pentalocular capsule with five distinct sutures and imprints of winged seedlike structures in the locules. Recent modifications in the systematics of the Malvales, their fossil record, and the distribution and migration of Pterospermum and other malvalean taxa in the context of the Indian subcontinent are discussed.

    • A fruit wing of Shorea Roxb. from the Early Miocene sediments of Kachchh, Gujarat and its bearing on palaeoclimatic interpretation

      Anumeha Shukla J S Guleria R C Mehrotra

      More Details Abstract Fulltext PDF

      A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea macroptera Dyer, which is a prominent member of the tropical evergreen forests of the Malayan Peninsula. The present finding, along with the other megafossil records described from the same area, indicates a typical tropical vegetation with a warm and humid climate at the time of deposition in contrast to the present day xeric vegetation in the area. As the family Dipterocarpaceae no longer exists in western India, it is essential to discuss the time of its extinction and possible causes, which may include drastic changes in the climate of the region. The present finding also supports the theory of a Malaysian origin for the family in contrast to the hypothesis of a Gondwanan origin.

    • Impact of global warming on cyclonic disturbances over south Asian region

      Savita Patwardhan Ashwini Kulkarni K Krishna Kumar

      More Details Abstract Fulltext PDF

      A state-of-the-art regional climate modelling system, known as PRECIS (Providing REgional Climates for Impacts Studies) developed by the Hadley Centre for Climate Prediction and Research, UK is applied over the Indian domain to investigate the impact of global warming on the cyclonic disturbances such as depressions and storms. The PRECIS simulations at 50 × 50 km horizontal resolution are made for two time slices, present (1961–1990) and the future (2071–2100), for two socioeconomic scenarios A2 and B2. The model simulations under the scenarios of increasing greenhouse gas concentrations and sulphate aerosols are analysed to study the likely changes in the frequency, intensity and the tracks of cyclonic disturbances forming over north Indian Ocean (Bay of Bengal and Arabian Sea) and the Indian landmass during monsoon season. The model overestimates the frequency of cyclonic disturbances over the Indian subcontinent in baseline simulations (1961–1990). The change is evaluated towards the end of present century (2071–2100) with respect to the baseline climate. The present study indicates that the storm tracks simulated by the model are southwards as compared to the observed tracks during the monsoon season, especially for the two main monsoon months, viz., July and August. The analysis suggests that the frequency of cyclonic disturbances forming over north Indian Ocean is likely to reduce by 9% towards the end of the present century in response to the global warming. However, the intensity of cyclonic disturbances is likely to increase by about 11% compared to the present.

    • Audible thunder characteristic and the relation between peak frequency and lightning parameters

      OuYang Yuhua Yuan Ping

      More Details Abstract Fulltext PDF

      In recent summers, some natural lightning optical spectra and audible thunder signals were observed. Twelve events on 15 August 2008 are selected as samples since some synchronizing information about them are obtained, such as lightning optical spectra, surface E-field changes, etc. By using digital filter and Fourier transform, thunder frequency spectra in observation location have been calculated. Then the two main propagation effects, finite amplitude propagation and attenuation by air, are calculated. Upon that we take the test thunder frequency spectra and work backward to recalculate the original frequency spectra near generation location. Thunder frequency spectra and the frequency distribution varying with distance are researched. According to the theories on plasma, the channel temperature and electron density are further calculated by transition parameters of lines in lightning optical spectra. Pressure and the average ionization degree of each discharge channel are obtained by using Saha equations, charge conservation equations and particle conservation equations. Moreover, the relationship between the peak frequency of each thunder and channel parameters of the lightning is studied.

    • Atmospheric aerosol characteristics retrieved using ground based solar extinction studies at Mohal in the Kullu valley of northwestern Himalayan region, India

      Nand L Sharma Jagdish C Kuniyal Mahavir Singh Pitamber P Dhyani Raj P Guleria Harinder K Thakur Pan S Rawat

      More Details Abstract Fulltext PDF

      Aerosol parameters are measured using a ground-based Multi-wavelength Radiometer (MWR) at Mohal (31.90°N, 77.11°E, 1154 m amsl) in the Kullu valley during clear sky days of a seasonal year. The study shows that the values of spectral aerosol optical depths (AODs) at 500 nm and the Ångstrom turbidity coefficient ‘𝛽’ (a measure of columnar loading in atmosphere) are high (0.41 ± 0.03, 0.27 ± 0.01) in summer, moderate (0.30 ± 0.03, 0.15 ± 0.03) in monsoon, low (0.19 ± 0.02, 0.08 ± 0.01) in winter and lowest (0.18 ± 0.01, 0.07 ± 0.01) in autumn, respectively. The Ångstrom wavelength exponent ‘𝛼’ (indicator of the fraction of accumulation-mode particles to coarse-mode particles) has an opposite trend having lowest value (0.64 ± 0.06) in summer, low (0.99 ± 0.10) in monsoon, moderate (1.20 ± 0.15) in winter and highest value (1.52 ± 0.03) in autumn. The annual mean value of AOD at 500 nm, ‘𝛼’ and ‘𝛽’ are 0.24 ± 0.01, 1.06 ± 0.09 and 0.14 ± 0.01, respectively. The fractional asymmetry factor is more negative in summer due to enhanced tourists’ arrival and also in autumn months due to the monthlong International Kullu Dussehra fair. The AOD values given by MWR and satellite-based moderate resolution imaging spectro-radiometer have good correlation of 0.76, 0.92 and 0.97 on diurnal, monthly and seasonal basis, respectively. The AODs at 500 nm as well as ‘𝛽’ are found to be highly correlated, while ‘𝛼’ is found to be strongly anti-correlated with temperature and wind speed suggesting high AODs and turbidity but low concentration of fine particles during hot and windy days. With wind direction, the AOD and ‘𝛽’ are found to be strongly anti-correlated, while ‘𝛼’ is strongly correlated.

    • Estimation of radon concentration in dwellings in and around Guwahati

      Gautam Kumar Dey Projit Kumar Das

      More Details Abstract Fulltext PDF

      It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m−3.

    • Seasonal variations in biomass and species composition of seaweeds along the northern coasts of Persian Gulf (Bushehr Province)

      A Dadolahi-Sohrab M Garavand-Karimi H Riahi H Pashazanoosi

      More Details Abstract Fulltext PDF

      This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney’s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m−2 during summer and lowest value of 856.9 ± 92.0 g dry wt m−2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m−2) and site 5 (856.7 ± 96.8 g dry wt m−2), respectively.

    • Altimeter data assimilation in the tropical Indian Ocean using water property conserving scheme

      Bhasha M Mankad Rashmi Sharma Sujit Basu P K Pal

      More Details Abstract Fulltext PDF

      Altimeter data have been assimilated in an ocean general circulation model using the water property conserving scheme. Two runs of the model have been conducted for the year 2004. In one of the runs, altimeter data have been assimilated sequentially, while in another run, assimilation has been suppressed. Assimilation has been restricted to the tropical Indian Ocean. An assessment of the strength of the scheme has been carried out by comparing the sea surface temperature (SST), simulated in the two runs, with in situ derived as well as remotely sensed observations of the same quantity. It has been found that the assimilation exhibits a significant positive impact on the simulation of SST. The subsurface effect of the assimilation could be judged by comparing the model simulated depth of the 20°C isotherm (hereafter referred to as D20), as a proxy of the thermocline depth, with the same quantity estimated from ARGO observations. In this case also, the impact is noteworthy. Effect on the dynamics has been judged by comparison of simulated surface current with observed current at a moored buoy location, and finally the impact on model sea level forecast in a free run after assimilation has been quantified in a representative example.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.