• Volume 118, Issue 4

      August 2009,   pages  273-412

    • Weakening of lower tropospheric temperature gradient between Indian landmass and neighbouring oceans and its impact on Indian monsoon

      S M Bawiskar

      More Details Abstract Fulltext PDF

      The study shows that in the scenario of global warming temperature gradient (TG) between Indian landmass and Arabian Sea/Bay of Bengal is significantly decreasing in the lower troposphere with maxima around 850 hPa. TG during pre-monsoon (March to May) is reducing at a significant rate of 0.036°/year (Arabian Sea) and 0.030°/year (Bay of Bengal). The above alarming results are based on sixty years (1948–2007) of daily temperature and wind data extracted from CDAS-NCEP/NCAR reanalysis datasets. TG based on ERA-40 data also indicates a decreasing trend of 0.0229°/year and 0.0397°/year for Arabian Sea and Bay of Bengal respectively. As TG is not governed by any type of significant oscillation, there is a possibility of TG tending to zero. It is further observed that the rate of warming over the oceans is more than that over the land which has resulted into the weakening of TG. Pre-monsoon TG has significant correlations with


      Except AISMR, the decreasing trends observed in all the above parameters are significant. All India rainfall for July and August together shows a significant decreasing trend of 0.995mm/year. Reducing number of depressions and cyclonic storms and increasing number of break days during monsoon over India are the reflections of the weakening of TG.

    • A case study of atmospheric boundary layer features during winter over a tropical inland station – Kharagpur (22.32°N, 87.32°E)

      Denny P Alappattu P K Kunhikrishnan Marina Aloysius M Mohan

      More Details Abstract Fulltext PDF

      The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization– Geosphere Biosphere Program (ISRO–GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient (VC), a factor determining the air pollution potential over a region, is also discussed in detail.

    • Mesoscale model simulation of low level equatorial winds over Borneo during the haze episode of September 1997

      Mastura Mahmud

      More Details Abstract Fulltext PDF

      The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Ni˜no event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM).

      Daily land and sea breeze conditions near the northwestern coast of Borneo in the state ofSarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants.

      Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.

    • Track prediction of very severe cyclone ‘Nargis’ using high resolution weather research forecasting (WRF) model

      D R Pattanaik Y V Rama Rao

      More Details Abstract Fulltext PDF

      The recent very severe cyclonic storm (VSCS) ‘Nargis’ over the Bay of Bengal caused widespread destruction over Myanmar after hitting the coast on 2 May 2008. The real time forecasting of the VSCS ‘Nargis’ was a very difficult task as it did not follow the normal westerly/northwesterly track. In the present study, a detailed diagnostic analysis of the system ‘Nargis’ is carried out initially to investigate the features associated with this unusual movement and subsequently the real time forecast of VSCS ‘Nargis’ using high resolution advanced version weather research forecasting (WRF) model is presented. The advanced research WRF model was run for 72 h at 27 km and 20 km resolutions with 28, 29, 30 April and 1 May as the initial conditions. The diagnostic study indicates that the recurvature of the system ‘Nargis’ was mainly associated with:


      The real time track forecast using theWRF model run at 27 km and 20 km resolution based on the initial conditions of 28 April (when the system was only 550 km away from the Indian coast) indicated that the system had a northeasterly forecast track and was not expected to cross the Indian coast. Similarly, based on 29 April initial condition the system showed east/east-northeasterly movement towards the Myanmar coast. The east/east-northeasterly movement of the ‘Nargis’ was persisting in the forecast based on 30 April and 1 May initial conditions with respective landfall errors of 85 km and 50 km with 27 km resolution, which reduces to 30 km and 40 km respectively with 20 km resolution, however, with a landfall time delay of about 10 h. Improvement of mean forecast errors at different forecast hours is noticed in WRF model run at higher resolution compared to that run at lower resolution. Thus, it is very clear that the advanced version WRF model had captured movement of the system reasonably well almost 3 days in advance. Consistence with the diagnostic analysis the WRF model forecast also indicates southerly/southwesterly strong steering wind at 200 hPa level and maximum pressure fall to the east of the system.

    • Polarized microwave forward model simulations for tropical storm Fanoos

      C Balaji M Deiveegan S P Venkateshan R M Gairola A Sarkar V K Agarwal

      More Details Abstract Fulltext PDF

      In the present study, forward radiative transfer simulations are carried out for the tropical cyclone Fanoos that hit the coast off south India in December 2005. The in-house radiative transfer package used for this study employs the doubling and adding method to calculate radiances leaving the top of the one dimensional precipitating atmosphere. The particle drop size distribution is assumed to follow a modified gamma distribution in respect of the cloud liquid water and cloud ice water content. For precipitation, the Marshall–Palmer particle size distribution is used. All the hydrometeor particles are assumed to be spherical and Lorentz Mie theory is used to evaluate the interaction parameters like absorption, scattering coefficients and polarized scattering matrix. In order to validate the drop size distributions and interaction parameter calculations, the simulated brightness temperatures are compared with the TMI measured brightness temperatures for all the channels. For carrying out this exercise, vertical hydrometeors retrieved by TMI are used as input. The differences between simulated and measured brightness temperatures are found to be within ± 10%. The maximum difference in the brightness temperatures between the present work and the Eddington model which the TRMM algorithm employs is about 4.5K. This may become significant when retrieval of precipitation is attempted by combining the forward model with a suitable retrieval strategy, under tropical conditions.

    • Comparison of two split-window methods for retrieving land surface temperature from MODIS data

      Shaohua Zhao Qiming Qin Yonghui Yang Yujiu Xiong Guoyu Qiu

      More Details Abstract Fulltext PDF

      Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in North China Plain. The results show that the max, min and mean errors of Mao method are 1.33K, 1.54K and 0.13K lower than the standard LST product respectively; while those of Sobrino method are 0.73K, 1.46K and 1.50K higher than the standard respectively. Validation of the two methods using LST product based on weather stations shows a good agreement between the standard and Sobrino method, with RMSE of 1.17K, whereas RMSE of Mao method is 1.85K. Finally, the study introduces the Sobmao method, which is based on Sobrino method but simplifies the estimation of atmospheric water vapour content using Mao method. The Sobmao method has almost the same accuracy with Sobrino method. With high accuracy and simplification of water vapour content estimation, the Sobmao method is recommendable in LST inversion for good application in Ningxia region, the northwest China, with mean error of 0.33K and the RMSE value of 0.91K.

    • SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India

      D Ramakrishnan A Bandyopadhyay K N Kusuma

      More Details Abstract Fulltext PDF

      The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (< 40%), moderate (20–40%) and low (> 20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80–100%.

    • Wind-driven estuarine turbidity maxima in Mandovi Estuary, central west coast of India

      Pratima M Kessarkar V Purnachandra Rao R Shynu Ishfaq Mir Ahmad Prakash Mehra G S Michael D Sundar

      More Details Abstract Fulltext PDF

      Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds ($5.1–5.6ms^{−1}$) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds ($3.2–3.7ms^{−1}$) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition.

    • Deformation mechanisms in the frontal Lesser Himalayan Duplex in Sikkim Himalaya, India

      Abdul Matin Sweety Mazumdar

      More Details Abstract Fulltext PDF

      Understanding deformation mechanisms in Himalayan rocks is a challenging proposition due to the complex nature of the deformed rocks and their genesis. Crustal deformation in the Himalayan thrust belt typically occurs in elastico-frictional (EF) or quasi-plastic (QP) regimes at depths controlled mainly by regional strain-rate and geothermal gradient. However, material property, grain-size and their progressive changes during deformation are also important controlling factors. We present evidence of EF deformation from Gondwana rocks developed during the emplacement of one of the frontal horses (Jorthang horse) in the Lesser Himalayan Duplex (LHD) structure associated with Lesser Himalayan rocks in the footwall of the Ramgarh thrust in the Rangit window near Jorthang in the Sikkim Himalaya. The rocks in the horse exhibit systematic changes in microand meso-structures from an undeformed protolith to cataclasite suggesting that it was emplaced under elastico-frictional conditions. Meso- to micro-scale shear fractures are seen developed in Gondwana sandstone and slate while intercalated fine-grained shale-coal-carbonates are deformed by cataclastic flow suggesting that material property and grain-size have played an important role in the deformation of the Jorthang horse. In contrast, the hanging wall schists and quartzites of the Ramgarh thrust exhibit quasi-plastic deformation structures. This suggests that the Jorthang horse was emplaced under shallower crustal conditions than the antiformally folded Ramgarh thrust sheet even though the Ramgarh sheet presently overlies the Jorthang horse.

    • Laboratory technique for quantitative thermal emissivity measurements of geological samples

      George Mathew Archana Nair T K Gundu Rao Kanchan Pande

      More Details Abstract Fulltext PDF

      Thermal infrared spectroscopy is a powerful technique for the compositional analysis of geological materials. The spectral feature in the mid-IR region is diagnostic of the mineralogy and spectral signatures of mixtures of minerals that add linearly, and therefore, can be used as an important tool to determine the mineralogy of rocks in the laboratory and remotely for planetary exploration. The greatest challenge in the emission measurement lies in the measurement of the weak thermal photons emitted from geological materials in a laboratory setup, and accurately records the temperature of the rock sample. The present work pertains to the details of a new Thermal Emission Spectrometer (TES) laboratory that has been developed under the ISRO Planetary Science and Exploration (PLANEX) programme, for emission related mineralogical investigations of planetary surfaces. The focus of the paper is on the acquisition and calibration technique for obtaining emissivity, and the deconvolution procedure to obtain the modal abundances of the thermal emission spectra in the range of 6–25 𝜇 m using Fourier Transform Infrared (FTIR) spectroscopy. The basic technique is adopted from the work of Ruff et al (1997). This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (> 65 𝜇m), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future Indian Moon mission programme (Chandrayan-II) to determine evidences of varied lithologies on the lunar surface.

    • Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India

      K V Swamy I V Radhakrishna Murthy K S Krishna K S R Murthy A S Subrahmanyam M M Malleswara Rao

      More Details Abstract Fulltext PDF

      The marine magnetic data acquired from offshore Krishna–Godavari (K–G) basin, eastern continental margin of India (ECMI), brought out a prominent NE–SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3–4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna–Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.