• Volume 116, Issue 3

      June 2007,   pages  171-274

    • Climatic forcing before, during, and after the 8.2 Kyr B.P. global cooling event

      Devendra Lal William G Large Stephan G Walker

      More Details Abstract Fulltext PDF

      This paper attempts at full characterization of the unique global 8.2Kyr B.P. cooling event. Significant atmospheric cooling started during 9.5–8.5Kyr B.P. when the Sun was extremely quiet during three periods of ∼50–100 years. The flood of melt water in the N. Atlantic from glacial lakes during the demise of the Laurentide ice sheet, starting at ∼8.5$Kyr$ B.P., adds to the atmospheric cooling. Climatic forcing events occurred at 8.5Kyr B.P., at 8.2Kyr B.P. and finally at 8.06Kyr B.P., leading to concurrent increases or decreases in the atmospheric 𝛥14C levels, completely consistent with the climatic forcing proposed here.

    • Fairweather atmospheric electricity at Antarctica during local summer as observed from Indian station, Maitri

      C Panneerselvam C Selvaraj K Jeeva K U Nair C P Anilkumar S Gurubaran

      More Details Abstract Fulltext PDF

      Surface measurements of the atmospheric electrical parameters like Maxwell current, electric field and conductivity studied at the Indian station, Maitri (70.75°S, 11.75°E, 117m above mean sea level), Antarctica, during austral summer have been analyzed for the years 2001 to 2004. A total of 69 days were selected which satisfied the ‘fairweather’ conditions, i.e., days with absence of high winds, drifting or falling snow, clouds, and fog effects. The diurnal variation curve of electric field and vertical current averaged for 69 fairweather days is a single periodic with a minimum at 03:00UT and a maximum near 19:00UT, which is very similar to the Carnegie curve. The correlation coefficient between these measured parameters has a high value (more than 0.9) for all the days. During fairweather days the measured current and field variations are similar and hence it is clear that the conductivity is more or less stable. During magnetically disturbed days, the dawn-dusk potential drop has clear influences on the diurnal variation and it modifies the conductivity. Apart from the day-to-day variation in low latitude thunderstorm activity, there are diurnal, seasonal, inter-annual variations in the electric potential and the currents, as well as solar influences on the measured parameters. This study will help us to examine the impact of solar and geophysical phenomena like solar flares, geomagnetic storms and substorms on the global electric circuit.

    • Rainfall analysis for Indian monsoon region using the merged rain gauge observations and satellite estimates: Evaluation of monsoon rainfall features

      S K Roy Bhowmik Ananda K Das

      More Details Abstract Fulltext PDF

      Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north–south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north–east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the grid resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.

    • Estimation of seismic spectral acceleration in Peninsular India

      S T G Raghu Kanth R N Iyengar

      More Details Abstract Fulltext PDF

      Peninsular India (PI), which lies south of 24°N latitude, has experienced several devastating earthquakes in the past. However, very few strong motion records are available for developing attenuation relations for ground acceleration, required by engineers to arrive at rational design response spectra for construction sites and cities in PI. Based on a well-known seismological model, the present paper statistically simulates ground motion in PI to arrive at an empirical relation for estimating 5% damped response spectra, as a function of magnitude and source to site distance, covering bedrock and soil conditions. The standard error in the proposed relationship is reported as a function of the frequency, for further use of the results in probabilistic seismic hazard analysis.

    • Seismicity pattern in north Sumatra–Great Nicobar region: In search of precursor for the 26 December 2004 earthquake

      Sujit Dasgupta Basab Mukhopadhyay Auditeya Bhattacharya

      More Details Abstract Fulltext PDF

      We analyse the seismicity pattern including 𝑏-value in the north Sumatra–Great Nicobar region from 1976 to 2004. The analysis suggests that there were a number of significant, intermediate and short-term precursors before the magnitude 7.6 earthquake of 2 November 2002. However, they were not found to be so prominent prior to the magnitude 9.0 earthquake of 26 December 2004 though downward migration of activity and a 50-day short-term quiescence was observed before the event. The various precursors identified include post-seismic and intermediate-term quiescence of 13 and 10 years respectively, between the 1976 (magnitude 6.3) and 2002 earthquakes with two years (1990–1991) of increase in background seismicity; renewed seismicity, downward migration of seismic activity and foreshocks in 2002, just before the mainshock. Spatial variation in 𝑏-value with time indicates precursory changes in the form of high 𝑏-value zone near the epicenter preceding the mainshocks of 2004 and 2002 and temporal rise in 𝑏-value in the epicentral area before the 2002 earthquake.

    • Elastic waves along a cylindrical borehole in a poroelastic medium saturated by two immiscible fluids

      Ashish Arora S K Tomar

      More Details Abstract Fulltext PDF

      The propagation of elastic waves along a cylindrical borehole filled with/without liquid and embedded in an infinite porous medium saturated by two immiscible fluids has been studied. The theory of porous media saturated by two immiscible fluids developed by Tuncay and Corapcioglu (1997) is employed. Frequency equations determining the phase velocity of axial symmetric waves are obtained. It is found that the surface waves along cylindrical borehole are dispersive. The dispersion equation of Rayleigh-type surface waves along the boundary of a poroelastic solid half-space saturated by two immiscible fluids is also obtained. Some special cases have been deduced and the dispersion curves are obtained numerically for a peculiar model. It is found that the density of fluids affects the Rayleigh mode.

    • Monitoring the three-dimensional ionospheric electron density distribution using GPS observations over China

      Wen Debao Yuan Yunbin Ou Jikun

      More Details Abstract Fulltext PDF

      In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric electron density (IED) distribution over China. Essentially, an improved algebraic reconstruction technique (IART) is first proposed to reconstruct the ionospheric images with high resolution and high efficiency. A numerical experiment is used to validate the reliability of the method and its advantages to the classical algebraic reconstruction technique (ART). This is then used to reconstruct the IED images using the GPS data in China. The variations of the IED during magnetically quiet and disturbed days are reported and analyzed here. Reconstructed results during magnetically quiet days show some prominent ionospheric features such as the development of equatorial anomaly and the tilt of ionization crest. Meanwhile, ionospheric storm phase effects and disturbed features can also be revealed from the reconstructed IED image under storm conditions. Research shows that the positive storm phase effects usually happen in southern China, and the negative storm phase effects mainly occur in northern China. The equatorial anomaly crest moved to the north in the main phase of the storm. Ionosonde data recorded at Wuhan station provides the verification for the reliability of GPS-based CIT technique.

    • Geochemistry of some banded iron-formations of the archean supracrustals, Jharkhand–Orissa region, India

      H N Bhattacharya Indranil Chakraborty Kaushik K Ghosh

      More Details Abstract Fulltext PDF

      Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the Jharkhand–Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand–Orissa region are utilized to explore the source of metals and to address the thermal regime of the basin floor and the redox conditions of the archean sea. Hydrothermal fluids of variable temperatures might have contributed the major part of the Fe and other trace elements to the studied banded iron-formations. Diagenetic fluids from the sea floor sediments and river water might have played a subdued role in supplying the Fe and other elements for the banded iron-formations.

    • Improved bathymetric datasets for the shallow water regions in the Indian Ocean

      B Sindhu I Suresh A S Unnikrishnan N V Bhatkar S Neetu G S Michael

      More Details Abstract Fulltext PDF

      Ocean modellers use bathymetric datasets like ETOPO5 and ETOPO2 to represent the ocean bottom topography. The former dataset is based on digitization of depth contours greater than 200m, and the latter is based on satellite altimetry. Hence, they are not always reliable in shallow regions. An improved shelf bathymetry for the Indian Ocean region (20°E to 112°E and 38°S to 32°N) is derived by digitizing the depth contours and sounding depths less than 200m from the hydrographic charts published by the National Hydrographic Office, India. The digitized data are then gridded and used to modify the existing ETOPO5 and ETOPO2 datasets for depths less than 200 m. In combining the digitized data with the original ETOPO dataset, we apply an appropriate blending technique near the 200m contour to ensure smooth merging of the datasets. Using the modified ETOPO5, we demonstrate that the original ETOPO5 is indeed inaccurate in depths of less than 200m and has features that are not actually present on the ocean bottom. Though the present version of ETOPO2 (ETOPO2v2) is a better bathymetry compared to its earlier versions, there are still differences between the ETOPO2v2 and the modified ETOPO2. We assess the improvements of these bathymetric grids with the performance of existing models of tidal circulation and tsunami propagation.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.