• Volume 115, Issue 2

      April 2006,   pages  185-265

    • Transitions in the surface energy balance during the life cycle of a monsoon season

      T N Krishnamurti Mrinal K Biswas

      More Details Abstract Fulltext PDF

      In this observational/diagnostic study, we illustrate the time history of some important parameters of the surface energy balance during the life cycle of a single monsoon season. This chronology of the surface energy balance portrays the differential equilibrium state from the preonset phase to the withdrawal phase. This includes an analysis of the time history of base variables such as soil moisture, ground temperature, cloud cover, precipitation and humidity. This is followed by an analysis of the components of the surface energy balance where we note subtle changes in the overall balances as we proceed from one epoch of the monsoon to the next. Of interest here is the transition sequence: preonset, onset, break, revival, break, revival and withdrawal during the year 2001. Computations are all illustrated for a box over central India where the coastal effects were small, data coverage was not sparse and where the semi-arid land mass changes drastically to a lush green area. This region exhibited large changes in the components of surface energy balance. The principal results pertain to what balances the difference among the incoming short wave radiation (at the earth’s surface) and the long wave radiation exhibited by the ground. That difference is balanced by a dominant sensible heat flux and the reflected short wave radiation in the preonset stage. A sudden change in the Bowen ratio going from>1 to <1 is noted soon after the onset of monsoon. Thereafter the latent heat flux from the land surface takes an important role and the sensible heat flux acquires a diminishing role. We also examine the subtle changes that occur in the components of surface energy balance between the break and the active phases. The break phases are seen to be quite different from the preonset phases. This study is aimed to illustrate the major importance of moisture and clouds in the radiative transfer computations that are central to the surface energy balance during each epoch. These sensitivities (of moisture and clouds) have major consequences for weather and climate forecasts

    • Spatio-temporal variability of summer monsoon rainfall over Orissa in relation to low pressure systems

      M Mohapatra U C Mohanty

      More Details Abstract Fulltext PDF

      The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose, rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa.

      The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa, especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over the period of 1980-1999

    • Coupled equations for transient water flow, heat flow, and deformation in hydrogeological systems

      T N Narasimhan

      More Details Abstract Fulltext PDF

      Hydrogeological systems are earth systems influenced by water. Their behaviors are governed by interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of matter and energy. Here, coupling among three of these processes is considered: flow of water, heat, and deformation, each of which is represented by a diffusion-type of partial differential equation. One side of the diffusion-type equation relates to motion of matter or energy, while the other relates to temporal changes of state variables at a given location. The coupling arises from processes that govern motion as well as those that relate to change of state. In this work, attention is devoted to coupling arising from changes in state. Partial derivatives of equations of state constitute the capacitance terms of diffusion-type equations. Of the many partial derivatives that are mathematically possible in physical systems characterized by several variables, only a few are physically significant. Because the state variables are related to each other through an equation of state, the partial derivatives must collectively satisfy a closure criterion. This framework offers a systematic way of developing the coupled set of equations that govern hydrogeological systems involving the flow of water, heat, and deformation. Such systems are described in terms of four variables, and the associated partial derivatives. The physical import of these derivatives are discussed, followed by a description of partial derivatives that are of practical interest. These partial derivatives are then used as the basis to develop a set of coupled equations. A brief discussion is presented on coupled equations from a perspective of energy optimization

    • Impact of sea breeze on wind-seas off Goa, west coast of India

      S Neetu Satish Shetye P Chandramohan

      More Details Abstract Fulltext PDF

      After withdrawal of the Indian Summer Monsoon and until onset of the next monsoon, i.e., roughly during November–May, winds in the coastal regions of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near the coast. The impact is quite significant when large scale winds are weak. During one such event, 1–15 April 1997, a Datawell directional waverider buoy was deployed in 23 m water depth off Goa, west coast of India. Twenty-minute averaged spectra, collected once every three hours, show that the spectrum of sea-breeze-related ‘wind-seas’ peaked at 0.23 ±0.05 Hz. These wind-seas were well separated from swells of frequencies less than 0.15 Hz. The TMA spectrum (Bouwset al 1985) matched the observed seas spectra very well when the sea-breeze was active and the fetch corresponding to equilibrium spectrum was found to be 77±43 km during such occasions. We emphasize on the diurnal cycle of sea-breeze-related sea off the coast of Goa and write an equation for the energy of the seas as a function of the local wind

    • Auto-correlation analysis of wave heights in the Bay of Bengal

      Abhijit Sarkar Jignesh Kshatriya K Satheesan

      More Details Abstract Fulltext PDF

      Time series observations of significant wave heights in the Bay of Bengal were subjected to auto-correlation analysis to determine temporal variability scale. The analysis indicates an exponential fall of auto-correlation in the first few hours with a decorrelation time scale of about six hours. A similar figure was found earlier for ocean surface winds. The nature of variation of auto-correlation with time lags was also found to be similar for winds and wave heights

    • Correct nomenclature for the Angadimogar pluton, Kerala, southwestern India

      H M Rajesh

      More Details Abstract Fulltext PDF

      The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid

    • Bedrock gorges in the central mainland Kachchh: Implications for landscape evolution

      M G Thakkar B Goyal A K Patidar D M Maurya L S Chamyal

      More Details Abstract Fulltext PDF

      Kachchh possesses a fault-controlled first-order topography and several geomorphic features indicative of active tectonics. Though coseismic neotectonic activity is believed to be the major factor in the evolution of the landscape, detailed documentation and analysis of vital landscape features like drainage characteristics, bedrock gorges and terraces are lacking. The present study is a site-specific documentation of gorges developed in the central part of the mainland Kachchh. We analyzed and interpreted four gorges occurring on either side of Katrol Hill Fault (KHF). The Khari river gorge is endowed with six levels of bedrock terraces, some of which are studded with large potholes and flutings. Since no active development of potholes is observed along the rivers in the present day hyper-arid conditions, we infer an obvious linkage of gorges to the humid phases, which provided high energy runoff for the formation of gorges and distinct bedrock terraces and associated erosional features. Development of gorges within the miliolites and incision in the fluvial deposits to the south of the KHF indicates that the gorges were formed during Early Holocene. However, ubiquitous occurrence of gorges along the streams to the south of KHF, the uniformly N40‡ E trend of the gorges, their close association with transverse faults and the short length of the exceptionally well developed Khari river gorge in the low-relief rocky plain to the north of KHF suggests an important role of neotectonic movements

    • Wave velocities in a pre-stressed anisotropic elastic medium

      M D Sharma Neetu Garg

      More Details Abstract Fulltext PDF

      Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress. The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium. Analytical expressions are used to calculate the directional derivatives of phase velocities. These derivatives are, further, used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium. Effect of initial stress on wave propagation is observed through the deviations in phase velocity, group velocity and ray direction for each of the quasi-waves. The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.