• Volume 107, Issue 4

      December 1998,   pages  235-471

    • Editorial

      V K Gaur

      More Details Fulltext PDF
    • Foreword

      J N Goswami S Krishnaswami

      More Details Fulltext PDF
    • Cosmic ray produced isotopes in terrestrial systems

      D Lal

      More Details Abstract Fulltext PDF

      Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in earth and planetary sciences. In this article, I will concentrate on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, caught roots with the discovery of cosmogenic14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the ’60s and ’70s. In the ’80s, there was arenaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today we find them being used to address diverse problems in earth and planetary sciences

      I discuss the present scope of the field of cosmic ray geophysics with an emphasis ongeomorphology. I must stress here that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

    • Astronomical and terrestrial causes of physical, chemical and biological changes at geological boundaries

      N Bhandari

      More Details Abstract Fulltext PDF

      The boundary horizons of the Cretaceous-Tertiary (Um Sohryngkew River section, Meghalaya and Anjar section, Kutch), the Permo-Triassic (Guling, Lalung, Ganmachidam and Attargoo sections, Spiti valley) and the Eocene-Oligocene (Tapti River section, Gujarat) have been identified in the sedimentary records of the Indian subcontinent. These sections have been studied for geochemical anomalies. The results are discussed in the framework of extra-terrestrial and terrestrial causes proposed to explain the physical, chemical and mineralogical observations at these boundaries. A critical analysis suggests that although the astronomical causes, particularly the bolide impacts, can easily explain the geochemical and physical changes, the terrestrial causes (volcanism) may have played a significant role in creating the biological stress observed in fossil records (mass extinction) at or near some of these boundaries.

    • Geologic and tectonic evolution of the Himalaya before and after the India-Asia collision

      Kewal K Sharma

      More Details Abstract Fulltext PDF

      The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (∼ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (∼ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.

    • Silicate and carbonate weathering in the drainage basins of the Ganga-Ghaghara-Indus head waters: Contributions to major ion and Sr isotope geochemistry

      S Krishnaswami Sunil K Singh

      More Details Abstract Fulltext PDF

      The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.

    • On the interpretation of the oceanic variations in87Sr/86Sr as recorded in marine limestones

      Youngsook Huh John M Edmond

      More Details Abstract Fulltext PDF

      The present published inventory of fluvial Sr and87Sr/86Sr data, combined with new information from the big rivers of Eastern Siberia (a combined total of ∼ 1,000 measurements), is used to investigate the probable origin of the large rise in the marine isotopic ratio, recorded in limestones, over the last ∼ 20 million years. With the exception of the data from the Ganga-Brahmaputra all measurements fall on what is proposed to be called the “Wickman trend”, essentially a mixing line between the limestone sink for Sr, with the integrated marine ratio, and the flux from the weathering of average continental crust. However, time-variations along this trend, i.e. changes in relative weathering intensity, cannot explain the observations from limestones. They can only be caused by very high and radiogenic fluxes of Sr as are occurring from the present Himalayan orogeny, lying far above the Wickman trend and caused by metamorphic remobilization of radiogenic Sr during underthrusting and subsequent unroofing associated with the collision of India with Eurasia. In general the variations in the ratio are therefore caused by specific tectonic events, not by general climatic variations in the intensity of aluminosilicate weathering.

    • Ice-core records of global climate and environment changes

      Robert J Delmas

      More Details Abstract Fulltext PDF

      Precipitation accumulating on the Greenland and Antarctic ice sheets records several key parameters (temperature, accumulation, composition of atmospheric gases and aerosols) of primary interest for documenting the past global environment over recent climatic cycles and the chemistry of the preindustrial atmosphere. Several deep ice cores from Antarctica and Greenland have been studied over the last fifteen years. In both hemispheres, temperature records (based on stable isotope measurements in water) show the succession of glacial and interglacial periods. However, detailed features of the climatic stages are not identical in Antarctica and in Greenland. A tight link between global climate and greenhouse gas concentrations was discovered, CO2 and CH4 concentrations being lower in glacial conditions by about 80 and 0.3 ppmv, respectively, with respect to their pre-industrial levels of 280 and 0.65 ppmv. Coldest stages are also characterized by higher sea-salt and crustal aerosol concentrations. In Greenland, contrary to Antarctica, ice-age ice is alkaline. Gas-derived aerosol (in particular, sulfate) concentrations are generally higher for glacial periods, but not similar in both the hemispheres. Marine and continental biomass-related species are significant in Antarctica and Greenland ice, respectively. Finally, the growing impact of anthropogenic activities on the atmospheric composition is well recorded in both polar regions for long-lived compounds (in particular greenhouse gases), but mostly in Greenland for short-lived pollutants.

    • Speleothems as high-resolution paleoenvironment archives: Records from northeastern China

      T L Ku H C Li

      More Details Abstract Fulltext PDF

      The isotopic compositions of oxygen and carbon and trace concentrations of magnesium and strontium in speleothems formed in limestone caves respond to climate changes outside the caves. Measurements of these properties on a stalagmite from Shihua Cave near Beijing, China, allowed reconstruction of the regional changes in precipitation, temperature and nature of vegetation. Over the last ∼ 500 years, there were fourteen precipitation cycles with a periodicity of 30–40 years, which may well reflect fluctuations in the strength of the East Asian summer monsoons reaching northeastern China. Relative to the mean temperature of this time interval, the period 1620–1900 AD was cold and periods 1520–1620 and 1900–1994 were warm. Over the last ∼ 3000-years, about eight wet/cool-dry/warm climatic cycles of 300–400 years duration occurred, the latest wet/cool half cycle corresponding to the Little Ice Age. The δ13C record registers the anthropogenic activities of fossil fuel CO2 combustion in recent decades and regional deforestation between 13 and 16 centuries when Beijing was bustling with palatial constructions and being developed into the world’s most populated city.

    • Stable isotope variations in a coral (Favia speciosa) from the Gulf of Kutch during 1948–1989 A.D.: Environmental implications

      S Chakraborty R Ramesh

      More Details Abstract Fulltext PDF

      The stable isotopic analyses (δ18O and δ13C) of a coralFavia speciosa spanning forty two years (1948–89 A.D.), collected from the Pirotan island (22.6°N, 70°E) in the Gulf of Kutch have been carried out to assess its potential for retrieving past environmental changes in this region. It is seen that the summer (minima) δ18O variations in the coral CaCO3 are negatively correlated with seasonal (summer) monsoon rainfall in the adjoining region of Kutch and Saurashtra and a qualitative reconstruction of historical rainfall variations in this region can be obtained by analyzing the δ18O in this species of coral. The observed mean seasonal range of δ18O variations is 0.34 ±0.17‰ (n = 42), whereas the expected range calculated (from available SST and measured δ18O of sea water) is ∼ 1.1 ±0.15‰ The difference is due to the coarse resolution of sampling, which can be corrected. The seasonal range in δ13C is ∼ l‰ and is explained by changes in: a) the light intensity related to the cloudiness during monsoons and b) phytoplankton productivity.

    • Application of226Ra,228Ra,223Ra, and224Ra in coastal waters to assessing coastal mixing rates and groundwater discharge to oceans

      Willard S Moore

      More Details Abstract Fulltext PDF

      The fate of dissolved material delivered to the coastal ocean depends on its reactivity and the rate at which it is mixed offshore. To measure the rate of exchange of coastal waters, we employ two short-lived radium isotopes,223Ra and224Ra. Along the coast of South Carolina, shore-perpendicular profiles of223Ra and224Ra in surface waters show consistent gradients which may be modeled to yield eddy diffusion coefficients of 350–540 m2s−1. Coupling the exchange rate with offshore concentration gradients yields estimates of offshore fluxes of dissolved materials. For systems in steady state, the offshore fluxes must be balanced by new inputs from rivers, groundwater, sewers or other sources. Two tracers that show promise in evaluating groundwater input are barium and226Ra. These tracers have high relative concentrations in the fluids and low-reactivity in the coastal ocean. Applying the eddy diffusion coefficients to the offshore gradient of226Ra concentration provides an estimate of the offshore flux of226Ra. Measuring the concentrations of226Ra in subsurface fluids provides an estimate of the fluid flux necessary to provide the226Ra. These estimates indicate that the volume of groundwater required to support these fluxes is of the order of 40% of the surface water flow.

    • 210Pb in the ocean: A pilot tracer for modeling particle reactive elements

      Ernst Maier-Reimer Gideon Henderson

      More Details Abstract Fulltext PDF

      We discuss the basic requirements for a successful modeling of210Pb in the ocean as a test tracer for at least other lead isotopes, but also of other elements that behave similarly to lead. With the aid of realistic models of the oceanic circulation and the major biogeochemical cycles in it, the result is a dynamically consistent model of lead cycling that reproduces observed profiles within 10%.

    • Determination of indium in natural waters by flow injection inductively coupled plasma mass spectrometry

      Dia Sotto Alibo Hiroshi Amakawa Yoshiyuki Nozaki

      More Details Abstract Fulltext PDF

      Two methods have been developed to measure indium (In) in natural waters by flow injection inductively coupled plasma mass spectrometry (ICPMS). One is the isotope dilution technique using an113In enriched spike and the other utilizes natural yttrium present in the sample as an internal standard. In the former, optimization of the113In spike to minimize error is often difficult for samples in which In concentrations are variable, whereas in the latter method, a separate determination of Y in the sample is necessary and hence more sample is required. Using about 1 liter of a water sample, 200 fold preconcentration of In was performed by solvent extraction and back extraction technique and then introduced into the ICPMS to measure the113In/115In or115In/89Y ratios. The detection limits were 0.01–0.02 pmol kg−1 for both methods.

      Application of the methods to seawater samples yielded the concentrations of 0.06–0.15 pmol kg−1 for the Pacific and 0.6–1.5 pmol kg−1 for the Atlantic. The large inter-oceanic variation of In best resembles that of Al amongst the 3B group of elements in the periodic table. River and estuarine samples gave a more variable range of concentrations of 0.01–15 pmol kg−1. Most of the In supplied by rivers is removed by scavenging in the estuarine mixing zone, suggesting that the fluvial input of In to the ocean is small.

    • Nitrogen isotopic studies in the suboxic Arabian Sea

      S W A Naqvi T Yoshinari J A Brandes A H Devol D A Jayakumar P V Narvekar M A Altabet L A Codispoti

      More Details Abstract Fulltext PDF

      Measurements of15N/14N in dissolved molecular nitrogen (N2), nitrate (NO3) and nitrous oxide (N2O) and18O/16O in N2O [expressed as δ15N and δ18O, relative to atmospheric N2 and oxygen (O2), respectively] have been made in water column at several locations in the Arabian Sea, a region with one of the thickest and most intense O2 minima observed in the open ocean. Microbially-mediated reduction of NO3 to N2 (denitrification) in the oxygen minimum zone (OMZ) appears to greatly affect the natural isotopic abundances. The δ15N of NO3 increases from 6‰ in deep waters (2500 m) to 15‰ within the core of the denitrifying layer (250–350 m); the δ15N of N2 concurrently decreases from 0.6‰ to 0.20‰ Values of the isotopic fractionation factor (ε) during denitrification estimated using simple advection-reaction and diffusion-reaction models are 22‰ and 25‰, respectively. A strong decrease in δ15N of NO3 is observed from ∼ 200m (> 11‰) to 80m (∼ 6‰); this is attributed to the input of isotopically light nitrogen through nitrogen fixation. Isotopic analysis of N2O reveals extremely large enrichments of both15N and18O within the OMZ, presumably due to the preferential reduction of lighter N2O to N2. However, isotopically light N2O is observed to accumulate in high concentrations above the OMZ indicating that the N2O emitted to the atmosphere from this region cannot be very heavy. The isotope data from the intense upwelling zone off the southwest coast of India, where some of the highest concentrations of N2O ever found at the sea surface are observed, show moderate depletion of15N, but slight enrichment of18O relative to air. These results suggest that the ocean-atmosphere exchange cannot counter inputs of heavier isotopes (particularly18O) associated with the stratospheric back flux, as proposed by previous workers. This calls for additional sources and/or sinks of N2O in the atmosphere. Also, the N2O isotope data cannot be explained by production through either nitrification or denitrification, suggesting a possible coupling between the two processes as an important mechanism of N2O production.

    • On laboratory studies of grains from outside the solar system

      U Ott

      More Details Abstract Fulltext PDF

      An overview is given of the identified surviving presolar grains in primitive meteorites. Two of these phases are discussed in more detail: (a) Presolar silicon carbide, with special emphasis on heavy element isotopic compositions which trace the slow neutron capture process (s-process) of nucleosynthesis. It is argued that there are problems either with the grain or neutron capture cross section data or with current basic understanding of heavy element nucleosynthesis, (b) Presolar diamonds, where new developments are discussed concerning the origin of the (supernova) Xenon-HL component thought to be contained within them; in addition, arguments are presented in favor of diverse carrier phases for the various Xe components observed in diamond separates.

    • The triggered origin of the solar system

      Harri A T Vanhala

      More Details Abstract Fulltext PDF

      The scenario of the triggered origin of the solar system suggests that the formation of our planetary system was initiated by the impact of an interstellar shock wave on a molecular cloud core. The strength of this scenario lies in its ability to explain the presence of short-lived radionuclides in the early solar system. According to the proposal, the radioactivities were produced in a stellar source, transported into the molecular cloud core by a shock wave and mixed into the collapsing system during the interaction between the shock wave and the core. We examine the viability of the scenario by presenting results from recent numerical simulations. The calculations show that molecular cloud cores can be triggered into collapse by the impact of a shock wave propagating at the velocity of 10–45 km s−1. Some of the shock wave material incident on the core, typically 10–20%, can be injected into the collapsing system. The time scale of the process is ∼104–105 years, sufficiently short for the survival of the short-lived radioactivities. The simulations therefore confirm the viability of the scenario of the triggered origin of the solar system.

    • Short-lived nuclides in the early solar system

      J N Goswami

      More Details Abstract Fulltext PDF

      Isotopic records in meteorites provide evidence for the presence of several short-lived nuclides in the early solar system with half-lives varying from 105 to ∼8x107 years. Most of the nuclides with longer half-life (> 107 years) are considered to be products of stellar nucleosynthesis taking place over long time scales in our galaxy. However, for the relatively shorter-lived nuclides, two possibilities exist; they could be products of energetic particle interactions taking place in a presolar or early solar environment, or, they could have been produced in a stellar source and injected into the protosolar molecular cloud just prior to its collapse. The presently available data appear to support the latter case and put a stringent constraint of less than a million years for the time scale for the collapse of the protosolar molecular cloud to form the Sun and some of the first solar system solids. This short time scale also suggests the possibility of a triggered origin for the solar system with the very process of injection of the short-lived nuclides acting as the trigger for the collapse of the protosolar molecular cloud. Fossil records of the short-lived nuclides in meteorites also provide very useful chronological information on the early solar system processes like the time scale for nebular processing, the time scales for differentiation and for metal/silicate fractionation within planetesimals. The currently available data suggest a time scale of a few million years for nebular processing and a relatively short time scale of about ten million years within which differentiation, melting and recrystallization in some of the planetesimals took place.

    • The I-Xe chronometer

      C M Hohenberg R H Brazzle O V Pravdivtseva A P Meshik

      More Details Abstract Fulltext PDF

      129Xe, from the decay of the now-extinct 16.7 Ma129I, accumulates in iodine-bearing sites and since most iodine host phases are secondary, the I-Xe system is typically a chronometer for post-formational processes. The validity of the I-Xe chronometer is confirmed by comparison with Pb-Pb ages on phosphate and feldspar separates from twelve meteorites. Phosphate separates are found to be concordant with Pb-Pb for all six samples in which useful I-Xe data were obtained. Feldspar is a better iodine host than apatite in H chondrites, typically providing good I-Xe isochrons. These too are concordant with the Pb-Pb ages of the corresponding phosphates for five out of six feldspar separates. The exception is Allegan whose feldspar yields one of the oldest I-Xe ages observed, similar to those for CI and CM magnetites. We attribute this to a more primary mineralization, predating the secondary phosphate from which the comparison Pb-Pb age was obtained. Absolute I-Xe ages, found using the reported Pb-Pb age of Acapulco phosphate provide an absolute I-Xe age of 4.566 ± 0.002 Ga for both Shallowater and Bjurböle irradiation standards. This allows relative I-Xe ages to be interpreted in the context of absolute ages.

    • Noble gas components in planetary atmospheres and interiors in relation to solar wind and meteorites

      K Marti K J Mathew

      More Details Abstract Fulltext PDF

      We discuss observed xenon isotopic signatures in solar system reservoirs and possible relationships. The predominant trapped xenon component in ordinary chondrites (OC) is OC-Xe and its isotopic signature differs from Xe in ureilites, in carbonaceous chondrites, in the atmospheres of Earth and Mars, and in the solar wind. Additional minor Xe components were identified in type 3 chondrites and in the metal phase of chondrites. The OC-Xe and ureilite signatures are both consistent with varying mixtures of HL-Xe and slightly mass fractionated solar-type Xe. Xenon in the Martian atmosphere is found to be strongly mass fractionated by 37.7‰ per amu, relative to solar Xe, favoring the heavy isotopes. Xenon in SNC’s from the Martian mantle show admixture of solar-type Xe, which belongs to an elementally strongly fractionated component. The origin of the isotopic signatures of Ne and Xe in the terrestrial atmosphere are discussed in the light of evidence that the Xe isotopic fractionations in the Martian and terrestrial atmospheres are consistent. However, in the terrestrial atmospheric Xe component excesses are observed for132Xe and also for129,131Xe, relative to fractionated solar Xe. The suggested chemically fractionated fission Xe component (CFF-Xe) seems to closely match the above excesses. We discuss models of origin for planetary volatiles and possible processes driving their evolution to present day compositions.

    • Studies of modern and ancient solar energetic particles

      R C Reedy

      More Details Abstract Fulltext PDF

      Modern solar energetic particles (SEPs) have been studied for about 50 years by satellites and groundbased observations. These measurements indicate much about the nature of SEPs but cover too short a period to quantify the probabilities of very large solar particle events. Many SEPs have high enough energies to make nuclides in material in which they interact. Radionuclides measured in lunar samples have been used to extend the record about SEPs back several million years. Some new measurements of modern SEPs during the last solar cycle and new results for nuclides made by SEPs in lunar samples are presented and their implications discussed. Both the modern and ancient records need to be improved, and methods to get a better understanding of solar energetic particles discussed. The fluxes of SEPs during the last million years show an increasing trend when averaged over shorter radionuclide half-lives.

    • Interpretation of cosmogenic nuclides in meteorites on the basis of accelerator experiments and physical model calculations

      R Michel S Neumann

      More Details Abstract Fulltext PDF

      Cosmogenic nuclides in extraterrestrial matter provide a wealth of information on the exposure and collision histories of small objects in space and on the history of the solar and galactic cosmic radiation. The interpretation of the observed abundances of cosmogenic nuclides requires detailed and accurate knowledge of their production rates. Accelerator experiments provide a quantitative basis and the ground truth for modeling cosmogenic nuclide production by measurements of the relevant cross sections and by realistic simulations of the interaction of galactic protons with meteoroids under completely controlled conditions, respectively. We review the establishment of physical model calculations of cosmogenic nuclide production in extraterrestrial matter on the basis of such accelerator experiments and exemplify this approach by presenting new experimental and theoretical results for the cosmogenic nuclide44Ti. The model calculations describe all aspects of cosmogenic nuclide production and allow the determination of long-term solar and galactic cosmic ray spectra and a consistent interpretation of cosmogenic nuclides in extraterrestrial matter.

    • A debt of gratitude

      Vinod K Gaur

      More Details Fulltext PDF
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.