• Volume 103, Issue 2

      June 1994,   pages  99-351

    • Biogeochemistry of the Arabian Sea: Present information and gaps

      D Lal

      More Details Fulltext PDF
    • Circulation and water masses of the Arabian Sea

      S R Shetye A D Gouveia S S C Shenoi

      More Details Abstract Fulltext PDF

      The dynamics and thermodynamics of the surface layer of the Arabian Sea, north of about 10N, are dominated by the monsoon-related annual cycle of air-sea fluxes of momentum and heat. The currents in open-sea regime of this layer can be largely accounted for by Ekman drift and the thermal field is dominated by local heat fluxes. The geostrophic currents in open-sea subsurface regime also show a seasonal cycle and there is some evidence that signatures of this cycle appear as deep as 1000 m. The forcing due to Ekman suction is an important mechanism for the geostrophic currents in the central and western parts of the Sea. Recent studies suggest that the eastern part is strongly influenced by the Rossby waves radiated by the Kelvin waves propagating along the west coast of India.

      The circulation in the coastal region off Oman is driven mainly by local winds and there is no remotely driven western boundary current. Local wind-driving is also important to the coastal circulation off western India during the southwest monsoon but not during the northeast monsoon when a strong (approximately 7 × 106m3/sec) current moves poleward against weak winds. This current is driven by a pressure gradient which forms along this coast during the northeast monsoon due to either thermohaline-forcing or due to the arrival of Kelvin waves from the Bay of Bengal.

      The present speculation about flow of bottom water (deeper than about 3500 m) in the Arabian Sea is that it moves northward and upwells into the layer of North Indian Deep Water (approximately 1500–3500m). It is further speculated that the flow in this layer consists of a poleward western boundary current and a weak equatorward flow in the interior. It is not known if there is an annual cycle associated with the deep and the bottom water circulation.

    • On the coupling of hydrography, phytoplankton, zooplankton, and settling organic particles offshore in the Arabian Sea

      K Banse

      More Details Abstract Fulltext PDF

      Processes and issues related to the connections between hydrography, plankton, and the flux of organic carbon to great depth are reviewed for the offshore Arabian Sea and compared with observations in similar regimes of other seas. The south-north and west-east gradients and seasonality in the Arabian Sea are emphasized, but generalizations about the area as a whole are shunned. New data include regional differences in seasonality of satellite-observed chlorophyll for two years. The rule for the depth dependence of organic flux is unclear, therefore, this should be the first priority for future investigations. While the data for supply of organic carbon by settling and demand for the depth interval 200–1,000 m in the eastern Arabian Sea are in fair agreement, this is not true for the interval between 300 and 400 m. For advancing the understanding of the generation of flux in the upper layers and the consumption at depth, very much needs to be learned about the biology of the principal species of Zooplankton and nekton. To keep the task manageable, further studies of flux should focus on only one or two subdivisions of the Arabian Sea.

    • A model study of seasonal mixed-layer primary production in the Arabian Sea

      John Brock Shubha Sathyendranath Trevor Platt

      More Details Abstract Fulltext PDF

      We combined a surface irradiance model with a non-spectral photosynthesisirradiance model to estimate the daily, average rate of mixed-layer primary production in the Arabian Sea for the 15th day of months at the end of the northeast monsoon, the southwest monsoon, and the fall and spring inter-monsoons. Our model experiment uses climatologies of cloud cover, mixed-layer thickness, and satellite ocean-color observations of phytoplankton biomass.

      Modelled surface radiation is at an annual maximum in May beneath nearly cloud-free skies just prior to the summer solstice. The model estimate of surface radiation diminishes through the southwest monsoon over most of the northern Arabian Sea to an annual minimum in August due to intense cloudiness.

      In agreement with previous ship-based measurements, the photosynthesis-irradiance model predicts that the mixed-layer primary production in the Arabian Sea is extremely seasonal, and peaks annually during the southwest monsoon to the north-west of the atmospheric Findlater Jet and along the coast of Somalia. Northern Arabian Sea maxima predicted for both the summer and winter monsoons are separated by periods of low mixed-layer primary production, the fall and spring inter-monsoons. The annual cycles of modelled mixed-layer primary production differ by region in the Arabian Sea due to varying monsoon influence and circulation dynamics.

    • New production and mixed-layer physics

      Shubha Sathyendranath Trevor Platt

      More Details Abstract Fulltext PDF

      We treat the ocean carbon cycle as a coupled physical-biogeochemical process. The interactions between mixed-layer dynamics and growth of phytoplankton in the layer are discussed, and the formal relationship between phytoplankton accumulation and new production is examined. A coupled biological-physical model is presented for studying the classical spring bloom in the N. Atlantic, and possible differences in the mechanisms that drive the seasonal phytoplankton blooms in the N. Atlantic and the Arabian Sea are discussed. Finally, recommendations are made for observational programs to improve our understanding of the biologically-mediated carbon cycle in the Arabian Sea.

    • Fluxes of material in the Arabian Sea and Bay of Bengal — Sediment trap studies

      V Ramaswamy R R Nair

      More Details Abstract Fulltext PDF

      In order to investigate how monsoons influence biogeochemical fluxes in the ocean, twelve time-series sediment traps were deployed at six locations in the northern Indian Ocean. In this paper we present particle flux data collected during May 1986 to November 1991 and November 1987 to November 1992 in the Arabian Sea and Bay of Bengal respectively. Particle fluxes were high during both the SW and NE monsoons in the Arabian Sea as well as in the Bay of Bengal. The mechanisms of particle production and transport, however, differ in both the regions.

      In the Arabian Sea, average annual fluxes are over 50gm-2y-1 in the western Arabian Sea and less than 27gm-2 y-1 in the central part. Biogenic matter is dominant at sites located near upwelling centers, and is less degraded during peak flux periods. High particle fluxes in the offshore areas of the Arabian Sea are caused by injection of nutrients into the euphotic zone due to wind-induced mixed layer deepening. In the Bay of Bengal, average annual fluxes are highest in the central Bay of Bengal (over

      50gm-2y-1) and are least in the southern part of the Bay (37gm-2y-1). Particle flux patterns coincide with freshwater discharge patterns of the Ganges-Brahmaputra river system. Opal/carbonate and organic carbon/carbonate carbon ratios increase during the SW monsoon due to variations in salinity and productivity patterns in the surface waters as a result of increased freshwater and nutrient input from rivers.

      Comparison of S years data show that fluxes of biogenic and lithogenic particulate matter are higher in the Bay of Bengal even though the Arabian Sea is considered to be more productive. Our results indicate that in the northern Indian Ocean interannual variability in organic carbon flux is directly related to the strength and intensity of the SW monsoon while its transfer from the upper layers to the deep sea is partly controlled by input of lithogenic matter from adjacent continents.

    • Natural radionuclides in the Arabian Sea and Bay of Bengal: Distribution and evaluation of particle scavenging processes

      M M Sarin R Rengarajan B L K Somayajulu

      More Details Abstract Fulltext PDF

      Vertical and temporal variations in the activities of234Th,210Po and210Pb have been measured, in both dissolved and paniculate phases, at several stations in the eastern Arabian Sea and north-central Bay of Bengal. A comparative study allows us to make inferences about the particle associated scavenging processes in these two seas having distinct biogeochemical properties.

      A common feature of the234Th profiles, in the Arabian Sea and Bay of Bengal, is that the dissolved as well as total (dissolved + particulate) activity of234Th is deficient in the surface 200 m with respect to its parent,238U. This gross deficiency is attributed to the preferential removal of234Th by adsorption onto settling particles which account for its net loss from the surface waters. The scavenging rates of dissolved234Th are comparable in these two basins. The temporal variations in the234Th-238U disequilibrium are significantly pronounced both in the Arabian Sea and Bay of Bengal indicating that the scavenging rates are more influenced by the increased abundance of particles rather than their chemical make-up. In the mixed layer (0–50 m), the scavenging residence time of234Th ranges from 30 to 100 days.

      The surface and deep waters of both the seas show an enhanced deficiency of dissolved210Po relative to210Pb and that of210Pb relative to226Ra. The deficiencies of both210Po and210Pb in the dissolved phases are not balanced by their abundance in the particulate form indicating a net loss of both these nuclides from the water column. The scavenging rates of210Po and210Pb are significantly enhanced in the Bay of Bengal compared to those in the Arabian Sea. The mean dissolved210Po/210Pb and210Pb/226Ra activity ratios in deep waters of the Bay of Bengal are ∼ 0.7 and 0.1, respectively, representing some of the most pronounced disequilibria observed to date in the deep sea. The Bay of Bengal and the Arabian Sea appear to be the regions of most intense particle moderated scavenging processes in the world oceans. This is evidenced by the gross disequilibria exhibited by the three isotope pairs used in this study.

    • The biogeochemical distribution of trace elements in the Indian Ocean

      Paul M Saager

      More Details Abstract Fulltext PDF

      The present review deals with the distributions of dissolved trace metals in the Indian Ocean in relation with biological, chemical and hydrographic processes. The literature data-base is extremely limited and almost no information is available on particle processes and input and output processes of trace metals in the Indian Ocean basin and therefore much research is needed to expand our understanding of the marine chemistries of most trace metals. An area of special interest for future research is the Arabian Sea. The local conditions (upwelling induced productivity, restricted bottom water circulation and suboxic intermediate waters) create a natural laboratory for studying trace metal chemistry.

    • Denitrification processes in the Arabian Sea

      S W A Naqvi

      More Details Abstract Fulltext PDF

      Recent information on some consequences of the acute mid-water oxygen deficiency in the Arabian Sea, especially on carbon-nitrogen cycling, is reviewed. An evaluation of published estimates of water column denitrification rate suggests an overall rate in the vicinity of 30Tg Ny-1, but the extent of benthic contribution remains unknown. A decoupling of denitrification from primary production, unique to the Arabian Sea, is revealed by nitrite, electron transport system (ETS) activity and bacterial production data. Results of both enzymatic and microbiological investigations strongly point to a major role of organic carbon other than that sinking from surface layers in supporting denitrification. Although denitrification is associated with an intermediate nepheloid layer, it seems unlikely that the excess carbon comes with particles re-suspended along the continental margins and transported quasi-horizontally into the ocean interior; instead, the particle maximum may directly reflect a higher bacterial abundance. It is proposed that denitrification may be predominantly fuelled by the dissolved organic matter.

    • Context of the suboxic layer in the Arabian Sea

      Bruce A Warren

      More Details Abstract Fulltext PDF

      The setting of the Arabian Sea is reviewed in order to examine which of the circumstances causing large oxygen depletion in the ocean are responsible for the suboxic layer (concentrations < 0.1 ml 1−1) in the northern thermocline there. The wind field forces circulations that restrict but do not exclude exchange with the south, and a recent box-model interpretation of trichlorofluoromethane measurements indicates a modest throughflow for the layer of about 5 × 106m3s−1.The associated oxygen-flux divergence is roughly consistent with biochemical determinations of local oxygen-consumption rates, both approaches giving values (3–6 pl 1−1 sτ-1) that are modest in comparison with estimates elsewhere in the world ocean. Despite the high mean-annual surface productivity in the region (nearly 1gCm−2 day−1), it seems plausible that too little of this particulate matter is consumed at thermocline depths to cause an inflated oxygen demand there. Since the layer is neither an isolated pool, nor a sluggish backwater, nor a conspicuous oxygen sink, the suboxic concentrations must be due (as earlier proposed) to the low concentration in the water entering the layer from the south. That depletion in turn seems due to moderate consumption as the water travels the very long trajectories from its zone of sea-surface renewal (Lats. 40–50°S). Although large seasonal variations are expected in both throughflow volume transport and surface productivity (suggesting comparable changes in consumption rate), the volume of the suboxic layer seems big enough to buffer the oxygen levels there against any very noticeable overall variability.

    • Recent sedimentary records from the Arabian Sea

      B L K Somayajulu D N Yadav M M Sarin

      More Details Abstract Fulltext PDF

      An attempt is made to understand the redox conditions that prevailed in the north eastern continental margins of the Arabian Sea and in the nearby deep water regions during the past few centuries using short undisturbed sediment cores. The geochronology is accomplished using210Pb excess method and the proxy indicators chosen for productivity and associated redox changes are CaCO3, organic matter (OM), Mn and U along with major elements Fe and Al. Such changes in principle are related to high productivity in the overlying waters which in turn depend on monsoonal intensity that causes upwelling responsible for increase in productivity. Alongwith the published data on gravity cores from the same region, our measurements suggest the following:

      At ∼ 300 m water depth, south of 21°N, the sediment-water interface at depths of ∼ 300 m had been anoxic during the time span represented by the presently studied cores for approximately ∼ 700y as evidenced by low Mn/Al (< 0.7 × 10−2) and high U/Al (> 10−4) weight ratios. In some adjacent deeper regions, however, the environment turned oxic around ∼ 200 y BP. Whereas both Mn and Ra were lost to the overlying waters in the anoxic regions (depth ∼340m), the Mn that diffused from deeper sections appears to have mineralized at the sediment-water-interface. Studies of this type on long undisturbed cores from the margins of the Arabian Sea and the Bay of Bengal, involving several proxies and geochronology by more than one method are needed to understand short term environmental (and monsoonal intensity) changes of the recent past with high resolution.

    • Air-sea exchange of CO2 in the Gulf of Kutch, northern Arabian Sea based on bomb-carbon in corals and tree rings

      S Chakraborty R Ramesh S Krishnaswami

      More Details Abstract Fulltext PDF

      Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6°N, 70°E) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19°14′N, 73°24′E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO2 and the advective mixing of water in the Gulf of Kutch. The Δ14C peak in the Thane tree occurs in the year 1964, with a value of ∼630‰, significantly lower than that of the mean atmospheric Δ14C of the northern hemisphere (∼ 1000‰). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO2 exchange rate of 11–12 mol m−2 yr−1, and an advective velocity of 28 m yr−1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr−1) of the advective transport of water between the gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ14C time series.

    • Significance of bacteria in carbon fluxes in the Arabian Sea

      Farooq Azam Grieg F Steward David C Smith Hugh W Ducklow

      More Details Abstract Fulltext PDF

      In the Arabian Sea, temporal contiguity of highly oligotrophic and eutrophic periods, along with high water temperatures, may result in unique features of bacteriaorganic matter coupling, nutrient cycling and sedimentation, which are unlike those in the classical oligotrophic and eutrophic waters. Bacteria-phytoplankton interactions are suggested to influence phytoplankton aggregation and its timing. It is also hypothesized that, within aggregates, hydrolytic ectoenzyme activity, together with condensation reactions between the hydrolysis products, produce molecular species which are not readily degraded by pelagic bacteria. Accumulation of a reservoir of such slow-to-degrade dissolved organic carbon (DOC) is proposed to be a carbon flux and energy buffer, which moderates the response of bacteria to the dramatic variations in primary production in the Arabian Sea. Use of the slow-to-degrade DOC pool during the intermonsoon could temporarily render the Arabian Sea net-heterotrophic and a source of CO2 to the atmosphere. Stored DOC is also suggested to balance the observed deficit between mesopelagic carbon demand and the sinking particulate organic carbon supply. Knowledge of the significance of bacteria in carbon storage and cycling in the Arabian Sea is needed to understand the response of the ocean’s biogeochemical state to strong physical forcing and climate change.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.