• Volume 100, Issue 4

      December 1991,   pages  309-433

    • Methodological appraisal: Two examples

      P S Moharir

      More Details Abstract Fulltext PDF

      Drawing an inference about an empirical situation requires posing a problem or asking a question, collecting relevant data and choosing methods to analyse them. Though ideally under the spell of the muse of objectivity (but unrealistically) one imagines that the inference should be determined by the objective data alone, the former can depend on various aspects of the entire process that precedes it. This is brought out by two examples from earth science literature. They pertain to seismicity classification based on a pattern recognition algorithm and early palaeomagnetic studies. The examples are deliberately chosen from disjoint fields so that it is clear that the objective is not to contribute to any chosen field of earth science, but to make essentially methodological points. These are: (i) no inference is a culmination of a lineal or sequential process, but is a part of it; (ii) Therefore, one can and should return from there to the preceding process and revise it; (iii) All the intermediate and secondary inferences, all the disagreements between what was expected a priori and what happened on way to the inferences, the symptoms of the effects of the format of questions on the inferences should all be critically scrutinized; (iv) The total exercise should be viewed as not only that of drawing inferences about the external world, but also of learning the process of doing so. The latter experience is generally transferable to other problem situations.

    • Lightning-generated waves escaping out through plasma holes in the nightside Venus ionosphere

      R N Singh Hari Om Upadhyay

      More Details Abstract Fulltext PDF

      The plasma waves in the Venus ionosphere measured by OEFD aboard PVO are analysed. It is shown that these waves are generated by lightning like cloud-to-cloud discharges anywhere in the Venus ionosphere-surface waveguide. The theoretical minimum attenuation for waveguide mode propagation at 5.4 kHz is consistent with the maximum occurrence rate at this frequency. The lightning-generated and globally-propagating signals when encountered with plasma holes or ion-trough structures escape out partially and are detected by the OEFD aboard PVO. The 100 Hz signals can propagate upwards in whistler mode. Even the localized electrostatic mode waves would be converted into electromagnetic waves in the plasma holes and ion-trough regions.

    • Comparative study of scintillations at the magnetic equator and at the crest region of the equatorial anomaly in Indian zone

      Boby Mathew B M Pathan K N Iyer D R K Rao

      More Details Abstract Fulltext PDF

      Using simultaneous long-term observations of ionospheric scintillation at equator and anomaly crest region in the same longitude (Indian) zone comparative features of scintillation occurrence are brought out. The salient features are: (a) predominantly pre-midnight occurrence of scintillation at equator during winter and equinox seasons, (b) increase of pre-midnight scintillation occurrence with solar activity (c) shifting of occurrence peak during summer from post-midnight in low to pre-midnight in high solar activity periods (d) similarity of scintillation behaviour at these locations during winter and equinoxes but dissimilarity during summer. The solar activity response and magnetic effects indicate that the scintillations at the anomaly crest region in winter and equinox, particularly during high solar activity periods, are of equatorial origin while the summer events may be of local or mid-latitude origin.

    • Water vapour periodicities over Indian Ocean during contrasting monsoons from NOAA satellite data

      C M Kishtawal P K Pal M S Narayanan

      More Details Abstract Fulltext PDF

      The satellite-derived moisture fields during different phases of two normal and poor monsoon years have been studied. Spectral analysis was performed in different zones of the monsoon region to study the nature and modes of intraseasonal fluctuations of lower layer moisture fields.

      Seasonal mean fields of water vapour at low and middle layers show a dry anomaly over the Arabian subcontinent and a wet anomaly over the Bay of Bengal during good monsoon years, while the anomalies show an opposite trend during the poor monsoon years. The zonal and meridional propagation of low-frequency oscillations of moisture fields has also been examined. The southward movement of low-frequency oscillations seems to be suppressed in good monsoon years as compared to the poor monsoon years, whereas the northward movement of the same shows no particular difference. Fluctuations in the 30–50 day range are found shifted to longer time-period side in the poor monsoon years.

    • The dip equator over Peninsular India and its secular movement

      G K Rangarajan R C Deka

      More Details Abstract Fulltext PDF

      A ground geomagnetic survey conducted in peninsular India has demarkated the dip equator for the epoch 1991.0. A well-defined southward migration in the last two decades is evident. The secular trend in the vertical component and the direction of the migration in the India zone are shown to be consistent. The migratory movement of the dip equator in different longitude sectors is compared to highlight the complex nature of the secular trends.

    • Preliminary results from very long period data collected by a broad band digital seismic station

      C V Ramakrishna Rao V K Gaur

      More Details Abstract Fulltext PDF

      Preliminary analysis of seismograms recorded by a wide band high dynamic range digital seismograph installed under a collaborative research programme between IPG, Paris and NGRI, Hyderabad, indicates that the crust and upper mantle structure below the Indian continent are characterized by high velocity up to a depth of 500 km. Both the group and phase velocities in the period range of 100–350s are found to be faster by 3–4% and 1–3% respectively compared with global models such as the preliminary reference earth model.

    • Static deformation of two welded half-spaces due to very long strike-slip dislocations

      Raj Kumar Sharma Nat Ram Garg Kuldip Singh

      More Details Abstract Fulltext PDF

      Closed form analytic expressions for displacement and stresses at any point of either of the two homogeneous, isotropic, perfectly elastic half-spaces in welded contact due to very long strike-slip dislocations are obtained. Both cases of vertical and horizontal strike-slip dislocations are discussed in detail. Variation of the displacement with horizontal distance from the fault and with vertical distance from the interface for a vertical strike-slip fault is studied numerically.

    • Rheology of Indian continental crust and upper mantle

      A Manglik R N Singh

      More Details Abstract Fulltext PDF

      A rheological model of the Indian shield has been constructed using the thermal structure derived from available surface heat flow and heat generation data and the flow properties of characteristic minerals and rocks like quartz, diabase and olivine which respectively represent the upper crust, lower crust and upper mantle. Lateral variations in the thicknesses of the brittle and ductile crust and of the brittle upper mantle have thus been obtained for different tectonic environments. Implications of these results to interpretation of the seismic structure of the Indian shield have been pointed out.

    • Geology, geochemistry and geochronology of the Archaean Peninsular Gneiss around Gorur, Hassan District, Karnataka, India

      Y J Bhaskar Rao K Naha R Srinivasan K Gopalan

      More Details Abstract Fulltext PDF

      The Peninsular Gneiss around Gorur in the Dharwar craton, reported to be one of the oldest gneisses, shows nealy E-W striking gneissosity parallel to the axial planes of a set of isoclinal folds (DhF1). These have been over printed by near-coaxial open folding (DhF12) and non-coaxial upright folding on almost N-S trend (DhF2). This structural sequence is remarkably similar to that in the Holenarasipur schist belt bordering the gneisses as well as in the surpracrustal enclaves within the gneisses, suggesting that the Peninsular Gneiss has evolved by migmatization synkinematically with DhF1 deformation.

      The Gorur gneisses are high silica, low alumina trondhjemites enriched in REE (up to 100 times chondrite), with less fractionated REE patterns (CeN/YbN < 7) and consistently negative Eu anomalies (Eu/Eu* = 0.5 to 0.7).

      A whole rock Rb-Sr isochron of eight trondhjemitic gneisses sampled from two adjacent quarries yields an age of 3204 ± 30 Ma with Sri of 0.7011 ± 6 (2σ). These are marginally different from the results of Beckinsale and coworkers (3315 ± 54 Ma, Sri = 0.7006 ± 3) based on a much wider sampling. Our results indicate that the precursors of Gorur gneisses had a short crustal residence history of less than a 100 Ma.

    • Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, southern India

      K Naha R Srinivasan S Jayaram

      More Details Abstract Fulltext PDF

      The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province.

      Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group.

      Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.