• Volume 113, Issue 3

      June 2001,   pages  165-244

    • Dioxobridged complexes of molybdenum (IV) and tungsten (IV) with N-alkylphenothiazines and their interactions with L-cysteine and L-histidine

      B Keshavan Kempe Gowda

      More Details Abstract Fulltext PDF

      Six new dioxobridged complexes of molybdenum (IV) and tungsten (IV) with N-alkylphenothiazines having the general formula M2O4(L)2(H2O)2 [where M = molybdenum or tungsten and L = N-alkylphenothiazines] have been synthesised. The complexes have been characterised on the basis of analytical, molar conductance, magnetic susceptibility, spectral data, TGA and DTA. The low magnetic moments for the complexes are due to spin-spin interaction or metal-metal bonding. The interactions of these complexes with some biologically important amino acids have been studied.

    • Studies on the reactivity of cis-RuCl2 fragment in Ru(PPh3)2(TaiMe)Cl2 with N,N-chelators (TaiMe = 1-methyl-2-(p-tolylazo)imidazole). Spectral and electrochemical characterisation of the products

      Sanjib Pal Chittaranjan Sinha

      More Details Abstract Fulltext PDF

      Dechlorination of Ru(PPh3)2(TaiMe)Cl2 (TaiMe = p-Me-C6H4-N=N-C3H2NN(1)-Me (1), 1-methyl-2-(p-tolylazo)imidazole) has been carried out in acetone solution by Ag+ and reacted with N,N’-chelators to synthesise [Ru(PPh3)2 (TaiMe)(N,N’)]2+. The complexes have been isolated as their perchlorate salts. The N,N’ chelators are 1-alkyl-2-(phenylazo)imidazoles (PaiX, X = Me, Et, CH2Ph); 2-(arylazo)pyridines, (Raap,p-R-C6H4-N=N-C5H4N; R = H, Me, Cl); 2-(arylazo)pyrimidines (Raapm,p-R-C6H4-N=N-C3N2H2; R = H, Me, Cl); 2,2’-bipyridine (bpy) and 1,10-phenanthroline (o-phen). Unsymmetrical N,N’ chelators may give two isomers and this is indeed observed. The1H NMR spectral data refer to the presence of two isomers in the mixture in different proportions. With consideration of coordination pairs in the order of PPh3, PPh3; N,N (N refers to N(immidazole)) and N’,N (N’ refers to N(azo)), the complexes have been characterised astrans-cis-cis andtrans-trans-trans configuration; the former predominates in the mixture. Electrochemical studies exhibit high potential Ru(III)/Ru(II) couple and quasireversible N=N reduction. Electronic spectra show high intensity (ε ∼ 104) MLCT transition in the visible region (520 ±10) nm along with a shoulder (ε ∼ 103) in the longer wavelength region.

    • Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived fromo-phenylenediamine and acetoacetanilide

      N Raman Y Pitchaikani Raja A Kulandaisamy

      More Details Abstract Fulltext PDF

      Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of o-phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.

    • A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols

      H Surya Prakash Rao S P Senthilkumar

      More Details Abstract Fulltext PDF

      Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

    • Enantioselective solvent-free Robinson annulation reactions

      D Rajagopal R Narayanan S Swaminathan

      More Details Abstract Fulltext PDF

      The enantioselective cyclization of the prochiral cyclic substrates1 to7 and26, can be carried out in theneat using S-proline as catalyst. The substrates18 to22 and27 could not be cyclized with S-proline but could be cyclized with a mixture of S-phenylalanine and d-camphorsulphonic acid. The enantioselective cyclization of prochiral acyclic triones45 and47 and also the racemic tricarbonyl compounds54 to57 could also be carried out in theneat using S-proline as catalyst. The optically active enediones obtained in the above cyclizations could also be obtained directly from 1,3-diones or 2-hydroxymethylene cycloalkanones in a one-pot reaction with methyl vinyl ketone (MVK) and S-proline in the absence of solvents.13C NMR studies of the one-pot synthesis ofS-11 andS-14 reveal that the annulations involve initial formation of an acid-base complex followed by a Michael reaction and then an enantioselective cyclization. Such enantioselective cyclizations probably occur on the surface of S-proline crystals.

    • Excess molar volumes and viscosities of binary mixtures of 1,2-diethoxyethane with chloroalkanes at 298.15 K

      Amalendu Pal Rakesh Kumar Bhardwaj

      More Details Abstract Fulltext PDF

      Excess molar volumes (VmE) and viscosities (η) of the binary mixtures of 1,2-diethoxyethane with di-, tri- and tetrachloromethane have been measured at 298-15 K and atmospheric pressure over the entire mole fraction range. The deviations in viscosities (δlnη) and excess energies of activation (δG*E) for viscous flow have been calculated from the experimental data. The Prigogine-Flory-Patterson (PFP) model has been used to calculateVmE, and the results have been compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients and these have also been compared with experimental data for the three mixtures. The results have been discussed in terms of dipole-dipole interactions between 1,2-diethoxyethane and chloroalkanes and their magnitudes decreasing with the dipole character of the molecules. A short comparative study with results for mixtures with polyethers and chloroalkanes is also described.

    • Synthesis and characterization of submicron-sized mesoporous aluminosilicate spheres

      Gautam Gundiah M Eswaramoorthy S Neeraj Srinivasan Natarajan C N R Rao

      More Details Abstract Fulltext PDF

      Mesoporous aluminosilicate spheres of 0.3–0.4 Μm diameter, with different Si/Al ratios, have been prepared by surfactant templating. Surface area of these materials is in the 510–970 m2 g-1 range and pore diameter in the 15–20 å range.

    • Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet andab initio calculation

      Nikhil Guchhait

      More Details Abstract Fulltext PDF

      Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition,ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d,p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31G level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.