• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Built-up column; cold formed steel; finite element model; AISI specifications; gradient tree boosting; multivariate adaptive regression splines.

    • Abstract


      This study presents the prediction of the ultimate load carrying capacity of cold formed steel (CFS) built-up back-to-back channel columns having fixed boundary conditions under axial compressive load. There were 60 non-linear finite element models developed in ABAQUS, 12 of which were validated using experimental data while the remaining 48 models were validated based on AISI specification design standards. The finite element analysis and experimental results were also compared to the ultimate strength from the AISI specification. A parametric study was carried out using the validated finite element model in addition to the use of machine learning models to predict the ultimate load of CFS sections. Here, the machine learning models such as Artificial Neural Network (ANN), Gradient Tree Boosting (GTB) and Multivariate Adaptive Regression Splines (MARS) were developed for comparative evaluation of model predictions. Based on the performance evaluation using several statistical indices, MARS and GTB models were found to provide relatively accuratepredictions of the ultimate load of CFS sections.

    • Author Affiliations



      1. Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103, India
    • Dates

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.