• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/046/0113

    • Keywords

       

      Liquefaction susceptibility; PCA; ANN; ANFIS; ELM; dimension reduction.

    • Abstract

       

      Earthquake-induced liquefaction is an unpredicted phenomenon that causes catastrophic damages and devastation to the environment, structures, and human life. The assessment of soil liquefaction behavior is a decisive work for geotechnical engineers especially during the designing phase of any civil engineering projects. These decisions implicate tedious and costly experimental procedures and extensive evaluation. Considering these facts, the present study aims to simplify the process of evaluating soil’s liquefaction behavior in a broaderdomain involving the least experimental datasets. Three PCA (principal component analysis)-based advanced hybrid computational models, namely PCA-ANN, PCA-ANFIS, and PCA-ELM were developed to predict the liquefaction behavior of soils. The dimension reduction technique, i.e. PCA, was used to avoid the multicollinearity effect during the course of the development of the said models. Geotechnical parameters, namely plasticity index, SPT blow count, water content to liquid limit ratio, bulk density, total stress, effective stress, and fine content along with other seismic input variables, such as the ratio of peak ground acceleration and acceleration due to gravity, and magnitude of an earthquake were used to develop the predictive models. The predictive accuracy of the proposed models was evaluated via several fitness parameters. In the end, the best predictive model was determined using a novel tool called Rank Analysis. Based on the results, it has been established that the PCA-ELM hybrid computational model can be considered as a new alternative tool to assistgeotechnical engineers in the task of assessing the liquefaction potential of soil during the preliminary design stage in any engineering project.

    • Author Affiliations

       

      GHANI SUFYAN1 KUMARI SUNITA1 BARDHAN ABIDHAN1

      1. Department of Civil Engineering, National Institute of Technology Patna, Patna, Bihar 800 005, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.