• A hybrid physics-assisted machine-learning-based damage detection using Lamb wave

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/046/0064

    • Keywords

       

      Lamb wave; orthogonal matching pursuit; artificial neural network.

    • Abstract

       

      This research presents a hybrid physics-aided multi-layer feed forward neural network (MLFFNN) model to improve damage detection under Lamb wave responses. Here, a damage parameter database (DPD) is created from the complex responses of a thin aluminum plate generated using finite-element (FE) simulations. A double pulse-echo transducer configuration is implemented over the 1.6 mm thick aluminum plate with notch like defect, which generates only A0 mode in the plate structure and records damage-specific S0 mode. Sixty-sixFE simulations are conducted, each representing a distinct damage scenario in terms of damage location and Lamb wave frequency. Artificial noise is added to compensate environmental interference. Orthogonal matching pursuit was performed to improve the sparsity of the signal. Thereafter, the damage-specific features are extracted from the sparsed S0 signal to construct DPD for all 66 FE simulations. The fully developed DPD is deployed to train an MLFFNN supervised by a robust Levenberg–Marquardt algorithm. A set of initial tests are conducted for higher damage-depth to plate-thickness ratio with 1.0 mm notch depth, and the fully trained MLFFNN predicts the damage location with 99.94% accuracy. The proposed algorithm achieves a good level of generalization, including the cases of overlapping echoes and cluttered responses due to multiple reflections for the given damage scenarios.

    • Author Affiliations

       

      AKSHAY RAI1 MIRA MITRA1

      1. Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur 721302, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.