• Implementation of a novel and versatile initial rotor position estimation method on surface-mounted permanent magnet synchronous motor prototype at zero speed

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Surface-mounted PMSM; initial position estimation; finite-element method (FEM); selfinductance; coupled co-simulation; V/f control

    • Abstract


      This paper presents a novel initial rotor position estimation method for a surface-mounted permanent magnet synchronous motor (SPMSM) using its inherent magnetic features. Here, the initial rotor position has been estimated utilising the variation in phase inductances arising out of the unavoidable but verysmall saliency occurring either out of magnetic saturation of the machine or the magnet shape. Detailed investigations have been carried out to enumerate the actual magnitude of the inductances of the SPMSM with distributed armature winding and the dynamic saturation status with armature current variation. Here, 3-phase balanced voltage of higher frequency (150 Hz) is applied to the motor terminals for a short period of time (for 300 ms) and the corresponding phase currents are indirectly used to determine the rotor position. Innovativesignal processing steps have been used to distinguish small differences in the 3-phase currents caused by the small differences in the phase inductances. The position is determined from the relative values of different phase currents using a novel approach. This still leads to two diametrically opposite (electrical phase) solutions for the instantaneous rotor position. To eliminate this ambiguity, two alternative methods (for pole identification) have been proposed. Extensive co-simulations of finite-element method (FEM)-based electromagnetic simulation andsystem simulation (for logic implementation) have been conducted. The estimation methods have been validated experimentally on a laboratory-developed prototype SPMSM that was designed and fabricated by the authors.The experimental results are found to be in excellent agreement with the FEM-based simulation results. The complete initial position estimation method takes less than 1 s of real time, which is typically less than the prechargingtime of standard commercial inverters.

    • Author Affiliations



      1. Department of Electrical Engineering, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
    • Dates

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.