• Design, analysis, parameter evaluation and testing of a laboratoryfabricated brush-less DC motor prototype

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      BLDC motor; surface-mounted PM; design; demagnetisation; FEM analysis; thermal analysis; d-, q-axis inductance; Hall sensor; parameter estimation; load testing

    • Abstract


      This paper presents detailed steps and procedures for the design of a 4-pole, 0.75-hp, 1500-r.p.m. surface-mounted permanent magnet brush-less DC (SPM-BLDC) motor. The motor has been fabricated at the works of a local manufacturer. The parameters of the machine have been analytically evaluated and subsequently compared to the experimentally determined values. Its practical performance on load has been experimentally evaluated in the laboratory and verified against analytical predictions too. Low-cost M45 electrical steel laminations, as used for commercial induction motors (IMs), have been used from considerations of cost and availability. This also enables direct comparison of important parameters (e.g. torque density, power density and efficiency) between the fabricated prototype and commercially available fractional-hp 3-phase and 1-phase IMs of similar rating. This study is significant since electrical motor manufacturers need not change their stator stamping production line for BLDC motor vis-a-vis IM in case of mass production. Such an approach is hardlyreported in the available technical literature. Analytical methods adopted include both conventional hand calculations and finite-element analysis using commercially available software package(s). Excellent agreementsbetween analytical and experimental values uphold the correctness of the design process, precision of fabrication and accuracy of experimental investigations

    • Author Affiliations



      1. Department of Electrical Engineering, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
    • Dates

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.