• Analysis of three-dimensional ponded drainage of a multi-layered soil underlain by an impervious barrier

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/045/0234

    • Keywords

       

      Ditch drains; analytical solution; three-dimensional seepage; stratifications of soil; directional conductivities of soil.

    • Abstract

       

      A general analytical model is proposed for predicting three-dimensional seepage into ditch drains through a soil column comprising of three distinct vertical anisotropic soil layers and underlain by an impervious barrier, the drains being fed by a distributed ponding head introduced at the surface of the soil column. The problem is solved for three different situations resulting from three different locations of the water table in the ditches, namely, when the water level lies in the first layer, when it lies in the second layer and finally when it falls in the third layer. The derived solutions are validated by comparing with analytical solutions of others for a few drainage scenarios; in addition, a few numerical checks on them have also been carried out by making use of the Processing MODFLOW environment. From the study, it is seen that ponded drainage of a multi-layered soil is mostly three-dimensional in nature, particularly in locations close to the drains and that the directional conductivities of the layers play a pivotal role in deciding the hydraulics of flow associated with such a system. Further, it has also come out of the study that by suitably altering the ponding distribution at the surface of the soil, the uniformity of water movement in a multi-layered drainage system can be considerably improved mainly if the directional conductivities of the bottom layers are relatively lower than those of the top layer. As soils innature are mostly stratified and as no analytical solution to the three-dimensional ponded ditch drainage problem currently exists for a layered soil, the proposed solutions are expected to be important additions to the alreadyexisting repertoire of drainage solutions on the subject, particularly when looked in the context of reclamation of water-logged and saline soils in layered field situations.

    • Author Affiliations

       

      SUBHADEEP CHAKRABARTI GAUTAM BARUA1

      1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.