• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/045/0080

    • Keywords

       

      Primary recycled ABS; cryogenic grinding; tensile test; peak strength; thermal properties; photomicrograph.

    • Abstract

       

      The virgin thermoplastics have numerous applications in fused deposition modelling (FDM) process. Commercially, different thermoplastics are recycled through extrusion (without any reinforcement as primary (1°) recycled materials) for enhancing their reusability and sustainability. However, hitherto very littlehas been reported on mechanical and thermal properties of cryogenic (cryo) milled 1° recycled ABS (to be used on FDM-based 3D printer). In the present research article the cryo ball milling of 1° recycled ABS thermoplastichas been reported to explore the influence of cryo environment (-196 °C) on mechanical, thermal and surface properties of the ABS-based feed stock filament (prepared through screw extrusion) for further use on commercial FDM set-up (without any hardware/software change). The process parameters of cryo-milling (like frequency of vibration, milling time and grinding media weight) have been selected for investigations using Taguchi-based design of experiment (DOE). The study results show significant improvement in peak strength (PS) of the cryo-milled ABS in comparison with non-cryo-milled ABS without any degradation of thermal properties (mainly heat capacity). As regards the process parameters of cryo-milling, 30-Hz frequency, 15-min milling time and 32-g media weight are the best settings for maximum PS. The maximum value of PS observed was 61.32 MPa. The optical photomicrographs supported with 3D rendered images were captured to support the surface characteristics and porosity level in the wires (to be used as feed stock filament for FDM) prepared with cryo-milled ABS (powder samples).

    • Author Affiliations

       

      VINAY KUMAR1 2 RUPINDER SINGH2 3 I P S AHUJA1

      1. Department of Mechanical Engineering, Punjabi University, Patiala, India
      2. Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, India
      3. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.